Here's an interesting puzzle I'm struggling to find an answer to, though I don't believe it's really very hard:
A group of seven boys - Jon, Tim, Tom, Bob, Bill, Ben and Will - were playing a game in which the counters were beans. Whenever a boy lost a game, from his pile of beans he had to give each of the other boys as many beans as they already had. They had been playing for some time and they all had different numbers of beans. They then had a run of seven games in which each boy lost a game in turn, in the order given above. At the end of this sequence of games, amazingly, they all had the same number of beans - 128. How many did each of them have at the start of this sequence of seven games?
Does anyone have any answers, and any explanations of how they got them? Once again, have fun...
2006-09-09
08:54:20
·
8 answers
·
asked by
Anonymous
in
Mathematics