1 Find the extrema and points of inflection (if any exist) of the function. Use a graphing utility to graph the function and confirm your results.
f(x)=[1/sqrt(2pi)]e^[-(x-3)^2) / 2
2 Find the derivative of the function
a)f(x)=ln[x sqrt(x^2 +1)]
b)f(x)=x^(3/2) log2 sqrt(x+1)
c)f(x)=tan^(-1) e^x +cos^(-1)e^(-x)
d)f(x)=1/x +tanhx
3 Evaluate the following integrals
a)S(x^2 +2x+1)^4 (x+1)dx
b)S 2*sqrt(x)/sqrt(x) dx
c)1/2
S dx/sqrt(1-4x^2)
0
d)2
S s sqrt(4+x^2) dx
0
e)Sx^3 -6x-20/ x+5 dx
f)pi/6
Ssin2xcos^3 2xdx
0
4 Show that f and g are inverse functions (a) anaytically and (b) graphically
f(x)=1/ 1+x, x>=to 0, g(x)=1-x/ x, 0< x <=to 1
5.Verify the identities
a)sinh^2 x=1/2(cosh2x -1)
b)cosh x + cosh y=2coshx+y / 2 coshx-y / 2
6. Use Simpson's Rule to approximate the value of the definite integral for the given value of n. Round your answer to 4 decimal places.
1
Ssinx/x dx, n=10
0
2006-08-15
05:31:23
·
5 answers
·
asked by
tim w
1
in
Homework Help