Protanomaly (one out of 100 males):
Protanomaly is referred to as "red-weakness", an apt description of this form of color deficiency. Any redness seen in a color by a normal observer is seen more weakly by the protanomalous viewer, both in terms of its "coloring power" (saturation, or depth of color) and its brightness. Red, orange, yellow, yellow-green, and green, appear somewhat shifted in hue ("hue" is just another word for "color") towards green, and all appear paler than they do to the normal observer. The redness component that a normal observer sees in a violet or lavender color is so weakened for the protanomalous observer that he may fail to detect it, and therefore sees only the blue component. Hence, to him the color that normals call "violet" may look only like another shade of blue.
Under poor viewing conditions, such as when driving in dazzling sunlight or in rainy or foggy weather, it is easily possible for protanomalous individuals to mistake a blinking red traffic light from a blinking yellow or amber one, or to fail to distinguish a green traffic light from the various "white" lights in store fronts, signs, and street lights that line our streets.
Deuteranomaly (five out of 100 males):
The deuteranomalous person is considered "green weak". Similar to the protanomalous person, he is poor at discriminating small differences in hues in the red, orange, yellow, green region of the spectrum. He makes errors in the naming of hues in this region because they appear somewhat shifted towards red for him. One very important difference between deuteranomalous individuals and protanomalous individuals is deuteranomalous individuals do "not" have the loss of "brightness" problem.
From a practical stand point though, many protanomalous and deuteranomalous people breeze through life with very little difficulty doing tasks that require normal color vision. Some may not even be aware that their color perception is in any way different from normal. The only problem they have is passing that "Blank Blank" color vision test.
Dichromasy - can be divided into protanopia and deuteranopia (two out of 100 males):
These individuals normally know they have a color vision problem and it can effect their lives on a daily basis. They see no perceptible difference between red, orange, yellow, and green. All these colors that seem so different to the normal viewer appear to be the same color for this two percent of the population.
Protanopia (one out of 100 males):
For the protanope, the brightness of red, orange, and yellow is much reduced compared to normal. This dimming can be so pronounced that reds may be confused with black or dark gray, and red traffic lights may appear to be extinguished. They may learn to distinguish reds from yellows and from greens primarily on the basis of their apparent brightness or lightness, not on any perceptible hue difference. Violet, lavender, and purple are indistinguishable from various shades of blue because their reddish components are so dimmed as to be invisible. E.g. Pink flowers, reflecting both red light and blue light, may appear just blue to the protanope.
Deuteranopia (one out of 100 males):
The deuteranope suffers the same hue discrimination problems as the protanope, but without the abnormal dimming. The names red, orange, yellow, and green really mean very little to him aside from being different names that every one else around him seems to be able to agree on. Similarly, violet, lavender, purple, and blue, seem to be too many names to use logically for hues that all look alike to him.
2007-01-15 05:57:54
·
answer #1
·
answered by Anonymous
·
0⤊
0⤋
Color blindness (color vision deficiency) is a condition in which certain colors cannot be distinguished, and is most commonly due to an inherited condition. Red/Green color blindness is by far the most common form, about 99%, and causes problems in distinguishing reds and greens. Another color deficiency Blue/Yellow also exists, but is rare and there is no commonly available test for it.
Depending on just which figures you believe, color blindness seems to occur in about 8% - 12% of males of European origin and about one-half of 1% of females. I did not find any figures for frequency in other races. Total color blindness (seeing in only shades of gray) is extremely rare.
# There is no treatment for color blindness, nor is it usually the cause of any significant disability. However, it can be very frustrating for individuals affected by it. Those who are not color blind seem to have the misconception that color blindness means that a color blind person sees only in black and white or shades of gray. While this sort of condition is possible, it is extremely rare. Being color blind does keep one from performing certain jobs and makes others difficult.
2007-01-15 05:57:18
·
answer #2
·
answered by blapath 6
·
0⤊
0⤋
it varies,there are lots ,Best to get a brochure from the optometrist.
2007-01-15 05:58:53
·
answer #6
·
answered by johny1punch 3
·
0⤊
1⤋