English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

A) x/ (ln2x)
B) 1/ (x(ln 2x))
C) 1/ (ln 2x)
D) 2/(ln 2x)
E) 1/ (ln (ln 2x))

2007-12-27 08:46:51 · 7 answers · asked by Anonymous in Science & Mathematics Mathematics

7 answers

The derivative of lnx = 1/x * chain of x
So for y= ln (ln 2x), we get
y' = 1/ln2x *1/2x * 2
y' = 1/ln2x *1/x
y' = 1/xln2x

[Answer: B]

2007-12-27 08:50:47 · answer #1 · answered by ¿ /\/ 馬 ? 7 · 0 1

y'=1/ln(2x) *d/dx(ln2x) =1/x*1/ln(2x) so the answer is B.

2007-12-27 16:53:14 · answer #2 · answered by kuiperbelt2003 7 · 0 0

y = ln u where u = ln 2x
dy/du = 1/u and du/dx = 1/x
dy/dx = [ 1 / ln (2x) ] [1 / x ]
dy/dx = [ 1 / (x ln 2x) ]
OPTION B

2007-12-31 09:29:02 · answer #3 · answered by Como 7 · 0 0

answer is B using chain rule
y=ln(x)
y'=1/x


so
y=ln(ln( 2x)
y'=1/(ln(2x)*1/(2x)*2
y'=1/(ln(2x)*1/x

2007-12-27 17:22:54 · answer #4 · answered by jon d 3 · 0 0

let u = ln(2x)

y = ln(u)

dy/dx = dy/du* du/dx = 1/u* 1/x

= 1/(x*ln(2x))

2007-12-27 16:53:28 · answer #5 · answered by nyphdinmd 7 · 0 0

c

2007-12-27 17:01:47 · answer #6 · answered by syrixez31 1 · 0 3

c

2007-12-27 16:50:55 · answer #7 · answered by BILL 6 · 0 3

fedest.com, questions and answers