A rancher has 300 feet of fencing to enclose a pasture bordered on one side by a river. The river side of the pasture needs no fence. Find the dimensions of the pasture that will produce a pasture with a maximum area.
1. Draw a Picture- make sure you leave one side unbounded(the river side) & dont use it in calculating the perimeter.
2. Label one side x and one side y
3. You only have 300 ft of fencing so 300 is the greatest perimeter.
4. So P: 300=2x+y
5. The area is what you are trying to maximize.
A=xy
Substitute:
A=x(300-2x)
=300x-2x^2
6. Take the derivative of the area. When a derivative is equal to 0 the number is either a max or min.
dA=-4x+300=0
x=75
7. Substitue in dimensions formula
2(75) + y =300
y= 150
8. Dimensions are
75 ft x 150 ft
2007-09-25 15:08:56
·
answer #1
·
answered by scientific08 1
·
0⤊
0⤋
Here's a simple-looking problem that turns out to be incredibly hard:
â«âtan x dx
Solution:
1/(2â2) ln |tan x - â(2 tan x) + 1| + 1/â2 arctan (â(2 tan x) - 1) - 1/(2â2) ln |tan x + â(2 tan x) + 1| + 1/â2 arctan (â(2 tan x)+1) + C
Method:
Let u=âtan x, du = 1/(2âtan x) * sec² x dx = (u⁴+1)/(2u) dx, dx = 2u/(u⁴+1) du
â«2u²/(u⁴+1) du
Factoring u⁴+1, we see that the roots are e^(±iÏ/4) and e^(±3iÏ/4), so the real quadratic factors are (u - e^(iÏ/4))(u - e^(-iÏ/4)) = u² - (e^(iÏ/4) + e^(-iÏ/4))u + 1 = u² - uâ2 + 1, and (u - e^(3iÏ/4))(u - e^(-3iÏ/4)) = u² - (e^(3iÏ/4) + e^(-3iÏ/4))u + 1 = u² + uâ2 + 1. So we have:
â«2u²/((u² + uâ2 + 1)(u² - uâ2 + 1)) du
Doing a partial fraction decomposition:
2u²/((u² + uâ2 + 1)(u² - uâ2 + 1)) = (Au+B)/(u² + uâ2 + 1) + (Cu+D)/(u² - uâ2 + 1)
2u² = (Au+B)(u² - uâ2 + 1) + (Cu+D)(u² + uâ2 + 1)
Letting u=0:
0 = B+D
Letting u = e^(iÏ/4) = (1+i)/â2:
2i = (C(1+i)/â2+D)(i + (1+i) + 1)
2iâ2 = (C + iC + Dâ2)(2+2i)
2iâ2 = 2C + 2iC + 2Dâ2 + 2iC - 2C + 2iDâ2
iâ2 = 2iC + Dâ2 + iDâ2
Since this is a decomposition over the reals, C and D are real, so equating real and imaginary parts:
0 = Dâ2, so D=0, and:
â2 = 2C+Dâ2 = 2C
C = 1/â2
Finally, we let u=1:
2 = (A+B)(1 - â2 + 1) + (C+D)(1 + â2 + 1)
2 = A(2-â2) + 1/â2 (2+â2)
2 - (2+â2)/â2 = (2-â2)A
2 - (â2+1) = (2-â2)A
1-â2 = (2-â2)A
(1-â2)(2+â2) = 2A
2 - 2â2 + â2 - 2 = 2A
-â2 = 2A
A = -1/â2
So to sum up, we have:
A=-1/â2
B=0
C=1/â2
D=0
Thus we have:
â«2u²/((u² + uâ2 + 1)(u² - uâ2 + 1)) du
1/â2 â«u/(u² - uâ2 + 1) - u/(u² + uâ2 + 1) du
Now, we break up the fractions a little:
1/â2 â«(u - 1/â2)/(u² - uâ2 + 1) + (1/â2)/(u² - uâ2 + 1) - (u + 1/â2)/(u² + uâ2 + 1) + (1/â2)/(u² + uâ2 + 1) du
And splitting this into four integrals:
1/â2 â«(u - 1/â2)/(u² - uâ2 + 1) du + 1/2 â«1/(u² - uâ2 + 1) du - 1/â2 â«(u + 1/â2)/(u² + uâ2 + 1) du + 1/2 â«1/(u² + uâ2 + 1) du
Now, using the substitution v=u²-uâ2+1, dv = 2u - â2 du = 2(u - 1/â2) du:
1/(2â2) â«1/v dv + 1/2 â«1/(u² - uâ2 + 1) du - 1/â2 â«(u + 1/â2)/(u² + uâ2 + 1) du + 1/2 â«1/(u² + uâ2 + 1) du
1/(2â2) ln|v| + 1/2 â«1/(u² - uâ2 + 1) du - 1/â2 â«(u + 1/â2)/(u² + uâ2 + 1) du + 1/2 â«1/(u² + uâ2 + 1) du
1/(2â2) ln |u² - uâ2 + 1| + 1/2 â«1/(u² - uâ2 + 1) du - 1/â2 â«(u + 1/â2)/(u² + uâ2 + 1) du + 1/2 â«1/(u² + uâ2 + 1) du
Now using the substitution v = u²+uâ2+1, dv = 2(u+1/â2) du on the third integral:
1/(2â2) ln |u² - uâ2 + 1| + 1/2 â«1/(u² - uâ2 + 1) du - 1/(2â2) â«1/v dv + 1/2 â«1/(u² + uâ2 + 1) du
1/(2â2) ln |u² - uâ2 + 1| + 1/2 â«1/(u² - uâ2 + 1) du - 1/(2â2) ln |v| + 1/2 â«1/(u² + uâ2 + 1) du
1/(2â2) ln |u² - uâ2 + 1| + 1/2 â«1/(u² - uâ2 + 1) du - 1/(2â2) ln |u² + uâ2 + 1| + 1/2 â«1/(u² + uâ2 + 1) du
Now, completing the square on both of the remaining integrals:
1/(2â2) ln |u² - uâ2 + 1| + 1/2 â«1/(u² - uâ2 + 1/2 + 1/2) du - 1/(2â2) ln |u² + uâ2 + 1| + 1/2 â«1/(u² + uâ2 + 1/2 + 1/2) du
1/(2â2) ln |u² - uâ2 + 1| + 1/2 â«1/((u - 1/â2)² + 1/2) du - 1/(2â2) ln |u² + uâ2 + 1| + 1/2 â«1/((u + 1/â2)² + 1/2) du
1/(2â2) ln |u² - uâ2 + 1| + â«1/((uâ2 - 1)² + 1) du - 1/(2â2) ln |u² + uâ2 + 1| + â«1/((uâ2 + 1)² + 1) du
Now, making in the second integral the substitution v = uâ2-1, dv = â2 du, and in the fourth integral w = uâ2+1, dw = â2 du, we have:
1/(2â2) ln |u² - uâ2 + 1| + 1/â2 â«1/(v² + 1) dv - 1/(2â2) ln |u² + uâ2 + 1| + 1/â2 â«1/(w² + 1) dw
1/(2â2) ln |u² - uâ2 + 1| + 1/â2 arctan v - 1/(2â2) ln |u² + uâ2 + 1| + 1/â2 arctan w + C
1/(2â2) ln |u² - uâ2 + 1| + 1/â2 arctan (uâ2-1) - 1/(2â2) ln |u² + uâ2 + 1| + 1/â2 arctan (uâ2+1) + C
Now, finally using the fact that u=âtan x:
1/(2â2) ln |tan x - â(2 tan x) + 1| + 1/â2 arctan (â(2 tan x) - 1) - 1/(2â2) ln |tan x + â(2 tan x) + 1| + 1/â2 arctan (â(2 tan x)+1) + C
And we are done.
2007-09-25 15:49:27
·
answer #2
·
answered by Pascal 7
·
0⤊
0⤋
calculus is a big ocean with many sub topics
you better specify the area in which you want the problem
2007-09-25 15:01:10
·
answer #3
·
answered by shuaib 2
·
0⤊
0⤋
sure!
Find the derivative:
f(x) = ^6 (sq rt (x))
Solution:
f(x) = ^6 (sq rt (x)) = x^(1/6)
f'(x) = (1/6)x^(-5/6) = 1 / (6x^(5/6))
2007-09-25 15:14:16
·
answer #4
·
answered by babigrl22 4
·
0⤊
0⤋