English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-09-08 09:19:33 · 4 answers · asked by Anonymous in Science & Mathematics Mathematics

4 answers

I = 5 ∫ (sin ² x) (cos x) dx
Let u = sin x
du = cos x dx
I = 5 ∫ u ² du
I = 5 (u ³ / 3) + C
I = (5 / 3) sin ³ x + C

2007-09-12 07:00:30 · answer #1 · answered by Como 7 · 1 0

∫5sin²x cosx dx =
5∫ sin²x (cos x dx)

Make a u substitution
u = sin x
du = cos x dx
The integral becomes:
5∫ u² du =
(5/3)u³ + C
Remember that u = sin x
(5/3)sin³x + C

2007-09-08 17:19:57 · answer #2 · answered by dr_no4458 4 · 0 0

remember cosxdx = d(sinx)

now substitute

Int5(sinx)^2d(sinx) = 5 Int (sinx)^2 d (sin x) = (5/3)(sinx)^3

2007-09-08 16:32:34 · answer #3 · answered by GTB 7 · 0 0

int(5sin^2(x)cos(x))dx
= int(5sin^2(x))d(sin(x))
= 5sin^3(x) / 3 + c

2007-09-08 16:25:19 · answer #4 · answered by Anonymous · 0 0

fedest.com, questions and answers