1) (1+sin x) / cos x + cos x / (1+ sin x) =
(1+sinx)² + cos²x /cosx*(1+sinx)=
(1+2*1*sinx+ sin²x + cos²x) /cosx*(1+sinx)=
As sin²x+cos²x = 1:
(1+2*sinx+ 1) /cosx*(1+sinx)=
(2*sinx+ 2) /cosx*(1+sinx)=
2*(sinx+ 1) /cosx*(1+sinx)=
2 /cosx=
2*(1/cos x) =
2 sec x
2) (sinx +tan x) / (1+ cos x) = 1/ cot x
(sinx +tan x) / (1+ cos x) =
(sinx +(sinx/cosx)) / (1+ cos x) =
((sinx*cosx +sinx)/cosx) / (1+ cos x) =
((sinx*cosx +sinx)/cosx) *1/(1+ cos x) =
(sinx*cosx +sinx)/ (cosx*(1+cosx)) =
(sinx*(cosx +1))/ (cosx*(1+cosx)) =
sinx/ cosx =
As cotx = cos x / senx:
1/cot x
3) sec ^2 x / ((sec^2 x) - 1) = csc ^2 x
sec ^2 x / ((sec^2 x) - 1) =
sin²x +cos²x = 1
Dividing by cos²x:
sin²x/cos²x +cos²x/cos²x = 1/cos²x
tan²x + 1 = sec²x
tan²x = sec²x -1
sec ^2 x / ((sec^2 x) - 1) =
sec²x / tg²x =
(1/cos²x) / (sin²x/cos²x) =
(1/cos²x) * (cos²x/sin²x) =
(1/sin²x) =
csc²x
4) sinx[cos^2x]+sin^3x =
sinx (cos²x+sin²x) =
sinx*1 =
sinx
As csc x = 1/sin x:
=1/csc x
Kisses from Brazil
=**
2007-08-22 11:45:44
·
answer #1
·
answered by Math Girl 7
·
1⤊
3⤋
1) multiply the whole equation by cos x (1+sin x) to get:
(1+sin x)^2 + (cos x)^2 = 2 (cos x (1+sin x)/ cos x)
1 + 2sin x + (sin x)^2 + (cos x)^2 = 2(1+sinx)
1 + 2sin x + (sin x)^2 + 1-(sin x)^2 = 2(1+sinx)
2 + 2sin x = 2(1+sinx)
2(1 + sin x ) = 2(1+sinx)
QED
3) sec ^2 x / ((sec^2 x) - 1) = csc ^2 x
(1/cos²x ) / ((1/cos²x )-1) = 1/sin²x
(1/cos²x ) / ((1-cos²x )/cos²x) = 1/sin²x
using sin²x+cos²x = 1 OR sin²x= 1-cos²x
(1/cos²x ) / ((sin²x )/cos²x) = 1/sin²x = 1/sin²x
QED
2) (sinx +tan x) / (1+ cos x) = 1/ cot x
[sin x + sinx / cosx] / (1+ cos x) = sin x / cosx
[sinxcosx + sinx]/[cosx (1+ cos x)]= sin x / cosx
sinx(1+cosx)/[cosx (1+ cos x)]= sin x / cosx = sin x / cosx
QED
4) sinxcos²x+sin³ x= 1 / csc x = sinx
factor out sinx and use sin²x+cos²x = 1 to get
sinx(cos²x+sin²x)= sinx (1) =sinx = left side sinx
QED
2007-08-22 12:00:34
·
answer #2
·
answered by 037 G 6
·
2⤊
1⤋
For future - look here: http://www.sosmath.com/trig/Trig5/trig5/trig5.html
s=sin x
c=cos x
t=tan x
cot=cot x
sec=sec x
csc = csc x
1)
(1+s)/c + c/(1+s)
= [(1+s)^2 +c^2]/c(1+s)
= [1+2s +s^2 +c^2]/c(1+s) use s^2+c^2=1
= 2(1+s)/c(1+s)
=2/c
=2.sec from cos(x)=1/sec(x)
2)
(s+t)/(1+c) use t=s/c
=(s+s/c)/(1+c)
=s(1+1/c)/(1+c)
=s[(c+1)/c]/(1+c)
=s/c
=t use tan(x)=1/cot(x)
=1/cot
3)
sec^2/{sec^x-1) use 1+[tan(x)]^2= [sec(x)]^2
=(1+t^2)/t^2
=1/t^2 +1 use cot=1/t
=cot^2 +1 use csc^2=1+cot^2
=csc^2
4) assuming you mean (sin x)(cos x)^2 +(sin x)^3
s.c^2 +s^3
=s.(c^2+s^2) use c^2 + s^2=1
=s use csc=1/sin
=1/csc
2007-08-22 12:08:23
·
answer #3
·
answered by piscesgirl 3
·
0⤊
2⤋
I'll do two of them. That should give you a good idea of how to go about the other two.
2) (sinx + tan x) / (1+ cos x)
= (sin(x) + sin(x)/cos(x)) / (1 + cos(x))
= (sin(x)cos(x)/cos(x) + sin(x)/cos(x)) / (1 + cos(x))
= [(sin(x)cos(x) + sin(x)) / cos(x)] / (1 + cos(x))
= (sin(x)cos(x) + sin(x)) / (cos(x) * (1 + cos(x))
= (sin(x)cos(x) + sin(x)) / (cos(x) + cos^2(x))
= sin(x)[cos(x) + 1] / cos(x)[1 + cos(x)]
= sin(x) / cos(x)
= tan(x)
= 1 / cot(x)
3) sec ^2 x / ((sec^2 x) - 1) = csc ^2 x
sec ^2 x / ((sec^2 x) - 1)
= sec^2(x) / tan^2(x)
= [1 / cos^2(x)] / [sin^2(x) / cos^2(x)]
= cos^2(x) / cos^2(x)sin^2(x)
= 1 / sin^2(x)
= csc^2(x)
2007-08-22 11:48:19
·
answer #4
·
answered by whitesox09 7
·
1⤊
3⤋
I'll prove the one's I can first.
4. sincos^2(x) + sin^3(x) = 1/csc x
1/csc x = sin x
sin cos^2 x + sin^3 x = sin x
Divide by sin x
cos^2 x + sin^2 x = 1
Don't think I need to explain any further. It's something you should remember.
3. sec^2 x / (sec^2 x - 1) = csc^2 x
sec^2 x -1 = tan^2 x
sec^2 x / tan^2 x = csc^2 x
We can cancel out all the squares.
sec x / tan x = csc x
(hyp / adj)(adj / opp) = (hyp / opp)
If you can out everything on the left side:
hyp / opp = hyp / opp
Thus the identity is true.
2. (sin x + tan x) / (1 + cos x) = 1/cot x
cot x = tan x
(sin x + tan x) / (1 + cos x) = tan x
Multiply (1 + cos x) on both sides.
sin x + tan x = tan x + (tan x) (cos x)
Subtract tan on both sides.
sin x = (tan x)(cos x)
opp / hyp = (opp/adj)(add/hyp)
opp / hyp = opp / hyp
sin x = sin x
So this is true too.
1. (1 + sin x) / cos x + cos x / (1 + sin x) = 2sec x
Multiply cos x on both sides.
(1 + sin x) + cos^2 x / (1 + sin x) = 2
Multiply (1 + sin x) on both sides.
sin^2 x + 2 sin x + 1 + cos^2 x = 2 + 2sin x
Cancel out things.
sin^2 x + cos^2 x = 1
2007-08-22 11:56:44
·
answer #5
·
answered by UnknownD 6
·
1⤊
4⤋
First of all calm down and take deep breathes. Go over your math book and do some practive questions, to see if you understand the lesson. Thats all you can do. Try not to think of it til the test in math. Remember dont worry!
2016-04-01 09:26:10
·
answer #6
·
answered by Anonymous
·
0⤊
0⤋
try doing your own homework. maybe you shouldnt be in these classes
2007-08-24 10:54:37
·
answer #7
·
answered by Anonymous
·
1⤊
0⤋
1.1+sinx/cosx+cosx/(1+sinx)
1+sinx/cosx+cosx(1-sinx)/(1-sin^2x)
=(1+sinx)/cosx+(1-sinx)/cosx
=2/cosx
= 2sec x.QED
2.(sinx+tanx)/(1+cosx)
=(sinx+sinx/cosx)/(1+cosx)
=sinx/cosx(cosx+1)/(1+cosx)
=tanx
=1/cotx.QED
3.sec^2x/(sec^2x-1)
=sec^2x/tan^2x
=sec^2x/ sin^2x/cos^2x
= sec^2x cos^2x/sin^2x
=1/sin^2x
= cosec^2x QED.
4.sinx[cos^2x]+sin^3x
= sinx[cos^2x+sin^2x]
=sinx x1
=1/cosec x QED.
=
=
2007-08-22 11:54:55
·
answer #8
·
answered by Anonymous
·
0⤊
3⤋
how is it that your college career depends on trig problems?
2007-08-22 12:02:40
·
answer #9
·
answered by Jpressure 3
·
2⤊
2⤋