sin(A+B) = sinAcosB + cosAsinB
sin^2 A + cos^2 A = 1
cos(A+B) = cosAcosB - sinAsinB
sin(2x) = sin(x)cos(x) + cos(x)sin(x) = 2sin(x)cos(x)
cos(2x) = cos^2(x) - sin^2(x) = 1 - 2sin^2(x)
LHS
=sin(3x)
= sin(2x+x)
= sin(2x)cos(x) + cos(2x)sin(x)
= 2sin(x)cos(x)cos(x) + (1 - 2sin^2(x))sin(x)
= 2sin(x)cos^2(x) + sin(x) - 2sin^3(x)
= 2sin(x)(1 - sin^2(x)) + sin(x) - 2sin^3(x)
= 2sin(x) - 2sin^3(x) + sin(x) - 2sin^3(x)
= -4sin^3(x) + 3sin(x)
= RHS
2007-07-25 21:19:22
·
answer #1
·
answered by gudspeling 7
·
0⤊
0⤋
Consider the Left Hand side:
sin(3x) = sin(2x + x).. opening this up will give you:
sin(2x)cosx + cos(2x)sinx..... again sin(2x) = sin(x + x) = 2sinxcosx and cos(2x) = cos(x + x)= cos^2(x) - sin^2(x)
so we get:
(2sinxcosx)cosx + {cos^2(x) - sin^2(x)}sinx
2sinxcos^2(x) + sinxcos^2(x) - sin^3(x)
3sinxcos^2(x) - sin^3(x)... now...... cos^2(x) = 1 -sin^2(x)... so
3sinx{1-sin^2(x)} - sin^3(x)
3sinx - 3sin^3(x) - sin^3(x)
3sinx - 4 sin^3(x) or
-4sin^3(x) + 3sin(x).... Hence proved
2007-07-26 04:24:03
·
answer #2
·
answered by Southpaw 5
·
0⤊
0⤋
sin(3x) = 4sin^3(x) + 3sin(x)
Choosing the left hand side,
LHS = sin(3x)
Decompose 3x into 2x + x
LHS = sin(2x + x)
Use the sine addition identity, sin(a + b) = sin(a)cos(b) + sin(b)cos(a)
LHS = sin(2x)cos(x) + sin(x)cos(2x)
Use the double angle identities, sin(2x) = 2sin(x)cos(x), and cos(2x) = cos^2(x) - sin^2(x).
LHS = 2sin(x)cos(x)cos(x) + sin(x) ( cos^2(x) - sin^2(x) )
Expanding,
LHS = 2sin(x)cos^2(x) + sin(x)cos^2(x) - sin^3(x)
LHS = 3sin(x)cos^2(x) - sin^3(x)
Use the identity cos^2(x) = 1 - sin^2(x).
LHS = 3sin(x) [ 1 - sin^2(x) ] - sin^3(x)
Expand.
LHS = 3sin(x) - 3sin^3(x) - sin^3(x)
Group like terms.
LHS = 3sin(x) - 4sin^3(x)
Swap the terms.
LHS = -4sin^3(x) + 3sin(x) = RHS
2007-07-26 04:17:37
·
answer #3
·
answered by Puggy 7
·
0⤊
0⤋
LHS
sin (2x + x)
sin 2x cos x + cos 2x sin x
2 sin x cos ² x + (1 - 2 sin ² x) sin x
2 sin x (1 - sin ² x) + sin x - 2 sin ³ x
2 sin x - 2 sin ³ x + sinx - 2 sin ³ x
3 sin x - 4 sin ³ x
RHS
3 sin x - 4 sin ³ x
LHS = RHS
2007-07-26 05:02:32
·
answer #4
·
answered by Como 7
·
0⤊
0⤋
sin(3x)=sin(2x+x)
=sin(2x)cosx+cos(2x)sinx
=2sinxcos^2(x)+(1-2sin^2(x))sinx
=2sinx(1-sin^2(x))+sinx-2sin^3(x)
=-4sin^3(x)+3sin(x)
2007-07-26 04:18:17
·
answer #5
·
answered by physicswgf1010 1
·
0⤊
0⤋