English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Evaluate ∫2cos^2 x dx

I've gotten an answer, but I'm not 100% sure about it. Any help is appreciated :)

2007-06-21 12:55:20 · 3 answers · asked by Corian 2 in Science & Mathematics Mathematics

3 answers

cos(2x) = 2cos^2 x - 1
2cos^2 x = 1 + cos(2x)
∫2cos^2 x dx = ∫1 + cos(2x)dx
= x + sin(2x)/2 + c
= x + sin(x)cos(x) + c

2007-06-21 13:23:42 · answer #1 · answered by gudspeling 7 · 0 0

cos 2x = 2 cos ² x - 1
2.cos ² x = cos 2x + 1
I = ∫ (cos 2x + 1) dx
I = sin 2x / 2 + x + C

2007-06-25 12:38:28 · answer #2 · answered by Como 7 · 0 0

It is cos(x) * sin(x) + x

integral of cos^2(x) dx = (1/2)(x) + (1/4)sin(2x)
so
integral 2*cos^2(x) dx
2((1/2)(x) + (1/4)sin(2x)
x + (1/2)sin(2x)

and sin(2x) = 2 sin(x) cos(x), so it can be simplified to:
x + (1/2) sin(2x)
x + (2/2) sin(x) cos(x)
x + sin(x) cos(x)

2007-06-21 20:07:25 · answer #3 · answered by Alex 4 · 1 0

fedest.com, questions and answers