English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Given that z = x + iy where x, y are real,

i) find z^2 in terms of x and y and
ii) find both square roots of i.

2007-05-12 15:54:29 · 3 answers · asked by Allison 1 in Science & Mathematics Mathematics

3 answers

i)
z^2 = x^2 - y^2 + 2ixy

ii)
(1+i)/sqrt2

-(1+i)/sqrt2

i=cis(pi/2)

in general i = cis(2npi + (pi/2))

i ^(1/2) = cis[ (2npi + (pi/2))/2 ] n = 0 , 1

2007-05-12 16:00:44 · answer #1 · answered by mth2006to 3 · 0 0

(x+i*y)^2=x^2+y^2-2xyi
let i^1/2=a+bi
=>i=a^2-b^2+2abi
=>a^2=b^2 & 2ab=1
=>a=+b or a=-b
& ab=1/2
=>a^2=1/2 =>a=1/(2)^1/2 or a = -1/(2)^1/2
& a=1/i(2)^1/2 or a=-1/i(2)^1/2

2007-05-12 23:06:32 · answer #2 · answered by ? 4 · 0 0

i)
z² = (x + iy).(x + iy)
z² = x² + 2i.xy - y²
z² = (x² - y²) + 2i.xy

ii)
i² = - 1
i = ± √(-1)

2007-05-13 09:39:26 · answer #3 · answered by Como 7 · 0 0

fedest.com, questions and answers