It's not totally clear to me what you've typed; I'm going to assume it's
tan(x) * e^(sin^2(x))
first use product rule, then chain rule a bunch of times
d/dx [tan(x) * e^(sin^2(x))]
= tan(x) * d/dx [e^(sin^2(x))] + d/dx [tanx] * e^(sin^2(x))
= tan(x) * 2 * sinx * cosx *e^(sin^2(x)) + sec^2(x) * e^(sin^2(x))
2007-05-12 08:09:34
·
answer #1
·
answered by itsakitty 3
·
1⤊
1⤋
derivative of e^sinx= (e^sinx)* (d/dx)(sinx) = (e^sinx)*(cosx)
derivative of tanx(e^sinx^2x)= tanx(e^sinx^2x)*(sinx^2x)log(sinx)*2+sec^2x(e^sinx^2x)
2007-05-16 01:04:21
·
answer #2
·
answered by sriram t 3
·
0⤊
0⤋
dy/dx = ((secx)^2)*(e^sinx^2x) + (tanx)*(x^2x)*(2lnx + 2)*cos(x^2x)*(e^sinx^2x)
Its a bit horrible maybe i slightly misunderstood exactly what you typed
2007-05-12 08:13:17
·
answer #3
·
answered by Anonymous
·
0⤊
1⤋
1)y´= e^sinx * cos x
I suppose it is the product of tan(x*e^sin^2x)
y´= 1/cos^2(x*e^sin^2x) * (e^sin^2x + xe^sin^2x*2sin x* cosx)
2007-05-12 08:11:53
·
answer #4
·
answered by santmann2002 7
·
0⤊
1⤋
e^sinx * cosx
2007-05-16 04:56:24
·
answer #5
·
answered by Abhy 3
·
0⤊
0⤋
If u r asking for y=e^sinx.
take ln y= sinx
=> (1/y)(dy/dx)=cos x
=> y'=cos x* e^sinx
If u r asking for y=tanx*e^sinx^2x,
let z=e^sinx^2x
also, let t=x^2x
then z=e^sint
=> dz/dt=cos t*e^sint
dz/dx=dz/dt*dt/dx
Since t=x^2x
ln t= 2x ln x
(1/t)(dt/dx)=2+2ln x
dt/dx=(x^2x)(2+2ln x)
So, dz/dx=cos(x^2x)*e^sin(x^2x)*(x^2x)(2+2ln x)
Since y=tanx*e^sinx^2x,
dy/dx = (sec x)^2* (e^sinx^2x)+tan x* (cos(x^2x)*e^sin(x^2x)*(x^2x)(2+2ln x))
2007-05-12 08:31:11
·
answer #6
·
answered by ganeshas 1
·
1⤊
0⤋