nuclear fuel
A fissionable or fertile isotope with a reasonably long half-life, used as a source of energy in a nuclear reactor. Also known as fission fuel; reactor fuel.
Many heavy elements can be made to fission by bombardment with high-energy particles. However, only neutrons can provide a self-sustaining nuclear fission reaction. Upon capture of a neutron by a heavy nucleus, the latter may become unstable and split into two fragments of intermediate mass. This fragmentation is generally accompanied by the emission of one or several neutrons, which can then induce new fissions. Only a few long-lived nuclides have been found to have a high probability of fission: 233U, 235U, and 239Pu. Of these nuclides, only 235U occurs in nature as 1 part in 140 of natural uranium, the remainder being mostly 238U. The other nuclides must be produced artificially: 233U from 232Th, and 239Pu from 238U. The nuclides 233U, 235U, and 239Pu are called fissile materials since they undergo fission with either slow or fast neutrons, while 232Th and 238U are called fertile materials. The latter, however, can also undergo the fission process at low yields with energetic neutrons; therefore, they are also referred to as being fissionable.
The term nuclear fuel applies not only to the fissile materials, but often to the mixtures of fissile and fertile materials as well. Using a mixture of fissile and fertile materials in a reactor allows capture of excess neutrons by the fertile nuclides to form fissile nuclides. Depending on the efficiency of production of fissile elements, the process is called conversion or breeding. Breeding is an extreme case of conversion corresponding to a production of fissile material at least equal to its consumption.
No rubber cannot be used.
source: answers.com
2007-03-20 04:54:25
·
answer #1
·
answered by purimani2005 4
·
0⤊
0⤋