First, multiply it through.
You'll end up with:
8 - 4i + 20i - 10i^2 =
8 - 10i^2 + 16i
Since you know that i^2 = -1, you plug that in to get:
8 + 10 + 16i =
18 + 16i
Then, you simply factor out 2 to make this as simple as possible:
2(9 + 8i)
2007-03-09 02:00:36
·
answer #1
·
answered by Rev Kev 5
·
0⤊
1⤋
(2+5i)(4-2i)=
2(4 - 2i) + 5i(4 - 2i) =
8 - 4i + 20i - 10i² =
10 + 16i + 8 = 16i +18
:=:
2007-03-09 11:09:56
·
answer #2
·
answered by aeiou 7
·
1⤊
0⤋
(2+5i) (4 -2i) = 8 + 16i -10i²
ax² + bx + c = 0
-10i² +16i + 8 = 0 ...................ans
Using Quadratic equation:
i = [-b + âb²-4ac]/2a
i =[-16 + â16²-4(-10) (8)]/2(-10)
=[-16- â(256 +320)]/-20
=[-16-(â576)]/-20
=[-16-24]/ -20
= - 40/-20
i = 2 ................ans for finding the value of i
To check this, we have;
(2+5i) (4 -2i) = -10²i + 16i+ 8
8 + 16i -10i² = -10²(2) +16(2) + 8
8 + 16(2) -10(2)² = -100(2²) +32 +8
8+ 32-100(4)= -100(4) +32 +8
- 360 = - 360
2007-03-09 10:35:48
·
answer #3
·
answered by edison c d 4
·
0⤊
1⤋
(2 + 5i)(4 - 2i) = (2 + 5i)*4 - (2 + 5i)*2i = 8 + 20i - 4i + 10 =
= 18 + 16i
2007-03-09 10:02:43
·
answer #4
·
answered by Amit Y 5
·
0⤊
1⤋
distribute first the numerical values for you to simplify it easily..
(2 + 5i)(4 - 2i)= 8 - 4i + 20i - 10i2
= 8+16i-10i2 i2= -1
=18+16i
2007-03-09 10:07:28
·
answer #5
·
answered by aira mesoj 1
·
0⤊
0⤋
(2 + 5i)(4 - 2i) =
8 + 20i - 4i - 10i²
8 + 16i - 10i²
8 + 16i - 10(- 1)
8 + 16i + 10
16i + 18
- - - - - - - - -s-
2007-03-09 10:10:36
·
answer #6
·
answered by SAMUEL D 7
·
0⤊
0⤋
(2 + 5i)(4 - 2i)
= 2(4 - 2i) + 5i(4 - 2i)
= 8 - 4i + 20i - 10i^2
= 8 + 16i + 10 .......................i^2 = -1
= 18 + 16i
2007-03-09 10:02:54
·
answer #7
·
answered by ganesan 2
·
1⤊
0⤋
Remember that i = sqrt(-1), so i^2 = -1.
(2 + 5i)(4 - 2i)
FOIL it out.
8 - 4i + 20i - 10i^2
8 + 16i - 10i^2
But i^2 = (-1),
8 + 16i - 10(-1)
8 + 16i + 10
18 + 16i
2007-03-09 10:01:52
·
answer #8
·
answered by Puggy 7
·
2⤊
0⤋
î = â(-1)
î² = -1
(2+5i)(4-2i)=
8 - 4î + 20î - 10î² =
8 - 16î - 10î² =
8 - 16î - 10(-1) =
8 - 16î + 10 =
18 + 16î
2007-03-09 10:16:02
·
answer #9
·
answered by Brenmore 5
·
1⤊
0⤋
remember foil
front outer inner last
6+-4i+20i+-10i^2
-10i^2 +16i+6
Is i a variable or the imaginary number (for sqrt -1)?
2007-03-09 10:08:08
·
answer #10
·
answered by Matthew P 4
·
0⤊
0⤋