Bohr's Theory of the Hydrogen Atom
In 1913, the Danish physicist Niels Bohr (1885 - 1962) managed to explain the spectrum of atomic hydrogen by an extension of Rutherford's description of the atom. In that model, the negatively charged electrons revolve about the positively charged atomic nucleus because of the attractive electrostatic force according to Coulomb's law.
But the electron can be taken not only as a particle, but also as a de Broglie wave (wave of matter) which interferes with itself. The orbit is only stable, if it meets the condition for a standing wave: The circumference must be an integer multiple of the wavelength. The consequence is that only special values of radius and energy are allowed. The mathematical appendix explains how to calculate these values.
According to classical electrodynamics, a charge, which is subject to centripetal acceleration on a circular orbit, should continuously radiate electromagnetic waves. Thus, because of the loss of energy, the electron should spiral into the nucleus very soon. By contast, an electron in Bohr's model emits no energy, as long as its energy has one of the above-mentioned values. However, an electron which is not in the lowest energy level (n = 1), can make a spontaneous change to a lower state and thereby emit the energy difference in the form of a photon (particle of light). By calculating the wavelengths of the corresponding electromagnetic waves, one will get the same results as by measuring the lines of the hydrogen spectrum.
You must not take the idea of electrons, orbiting around the atomic nucleus, for reality. Bohr's model of the hydrogen atom was only an intermediate step on the way to a precise theory of the atomic structure, which was made possible by quantum mechanics and quantum electrodynamics.
--------------------------------------------------------------------------------
This applet illustrates a hydrogen atom according to particle or wave model. You can choose a principal quantum number n. The right part of the graphics represents the energy levels of the atom. Right down at the bottom you can read off the orbital radius r and the total energy E.
If you try to vary the orbit's radius with pressed mouse button, this will generally lead to a non-stationary state. You can realize that by using the option "Wave model": The green wavy line which symbolizes the de Broglie wave will not be closed in most cases. Only if the circle's circumference is an integer multiple of the wavelength (blue), you will get a stationary state.
The Bohr model is a planetary model of the atom that explains things like line spectra. Neils Bohr proposed that the electrons orbiting the atom could only occupy certain orbits, orbits in which the angular momentum satisfied a particular equation:
where m is the mass of the electron, r is the radius of the orbit, and v is the orbital speed of the electron.
In other words, Bohr was proposing that the angular momentum of an electron in an atom is quantized.
What does quantization of the angular momentum mean for the energy of the electron in a particular orbit? We can analyze the energy very simply using concepts of circular motion and the potential energy associated with two charges. The electron has a charge of -e, while the nucleus has a charge of +Ze, where Z is the atomic number of the element. The energy is then given by:
The electron is experiencing uniform circular motion, with the only force on it being the attractive force between the negative electron and the positive nucleus. Thus:
Plugging this back into the energy equation gives:
If you rearrange the angular momentum equation to solve for the velocity, and then plug that back into the equation:
and solve that for r, you get:
This can now be substituted into the energy equation, giving the total energy of the nth level:
Energy level diagrams and the hydrogen atom
It's often helpful to draw a diagram showing the energy levels for the particular element you're interested in. The diagram for hydrogen is shown on page 918 in the text. Hydrogen's easy to deal with because there's only one electron to worry about.
The n = 1 state is known as the ground state, while higher n states are known as excited states. If the electron in the atom makes a transition from a particular state to a lower state, it is losing energy. To conserve energy, a photon with an energy equal to the energy difference between the states will be emitted by the atom. In the hydrogen atom, with Z = 1, the energy of the emitted photon can be found using:
Atoms can also absorb photons. If a photon with an energy equal to the energy difference between two levels is incident on an atom, the photon can be absorbed, raising the electron up to the higher level.
Angular momentum
Bohr's model of the atom was based on the idea the angular momentum is quantized, and quantized in a particular way. de Broglie came up with an explanation for why the angular momentum might be quantized in this way. de Broglie realized that if you use the wavelength associated with the electron, and only allow for standing waves to exist in any orbit (in other words, the circumference of the orbit has to be an integral number of wavelengths), then you arrive at the same relationship for the angular momentum that Bohr got.
The derivation works like this, starting from the idea that the circumference of the circular orbit must be an integral number of wavelengths:
Taking the wavelength to be the de Broglie wavelength, this becomes:
The momentum, p, is simply mv as long as we're talking about non-relativistic speeds, so this becomes:
Rearranging this a little, and recognizing that the angular momentum for a point mass is simply L = mvr, gives the Bohr relationship:
2007-03-06 16:04:44
·
answer #1
·
answered by sagarukin 4
·
0⤊
0⤋