Galvanizing can be either hot-dip or electrodeposition. Hot-dip gives a thick layer of resistant zinc coating with spangled appearance.
Galvanealing is hot-dip galvanizing plus some annealing. Purpose is to make it easier to paint. Appearance becomes dull grey.
2007-02-02 16:53:32
·
answer #1
·
answered by pj_gp18 3
·
0⤊
0⤋
Never heard of galvanized tubing. Anealed is usualy seamless stainless used for instrument grade gases such as calibration gases for emissions test equipment. It also requires special handling when installing and bending.
2007-02-02 08:18:00
·
answer #2
·
answered by normy in garden city 6
·
0⤊
0⤋
Zinc coatings prevent corrosion of the protected metal by forming a barrier, and by acting as a sacrificial anode if this barrier is damaged. When exposed to the atmosphere, zinc reacts with oxygen to form zinc oxide, which further reacts with water molecules in the air to form zinc hydroxide. Finally zinc hyroxide reacts with carbon dioxide in the atmosphere to yield a thin, impermiable, tenacious and quite insoluble dull gray layer of zinc carbonate which adheres extremely well to the underlying zinc, so protecting it from further corrosion, in a way similar to the protection afforded to aluminium and stainless steels by their oxide layers.
Hot dip galvanizing deposits a thick, robust layer that may be more than is necessary for the protection of the underlying metal in some applications. This is the case in automobile bodies, where additional rust proofing paint will be applied. Here, a thinner form of galvanizing is applied by electroplating, called "electro-galvanization". However, the protection this process provides is insufficient for products that will be constantly exposed to corrosive materials such as salt water. Nevertheless, most nails made today are electro-galvanized.
Galvanic protection (also known as sacrificial-anode or cathodic protection) can be achieved by connecting zinc both electronically (often by direct bonding to the protected metal) and ionically (by submerging both into the same body of electrolyte, such as a drop of rain). In such a configuration the zinc is absorbed into the electrolyte in preference to the metal that it protects, and maintains that metal's structure by inducing an electric current. In the usual example, ingots of zinc are used to protect a boat's hull and propellers, with the ocean as the common electrolyte.
As noted previously, both mechanisms are often at work in practical applications. For example, the traditional measure of a coating's effectiveness is resistance to a salt spray. Thin coatings cannot remain intact indefinitely when subject to surface abrasion, and the galvanic protection offered by zinc can be sharply contrasted to more noble metals. As an example, a scratched or incomplete coating of chromium actually exacerbates corrosion of the underlying steel, since it is less electrochemically active than the substrate.
Galvanized surface with visible spangleThe size of crystallites in galvanized coatings is an aesthetic feature, known as spangle. By varying the number of particles added for heterogeneous nucleation and the rate of cooling in a hot-dip process, the spangle can be adjusted from an apparently uniform surface (crystallites too small to see with the naked eye) to grains several centimeters wide. Visible crystallites are rare in other engineering materials.
annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one.
2007-02-02 18:11:04
·
answer #3
·
answered by Einstein 2
·
0⤊
0⤋