Myasthenia gravis (MG) is the most common primary disorder of neuromuscular transmission. The usual cause is an acquired immunological abnormality, but some cases result from genetic abnormalities at the neuromuscular junction. Basically what ends up happening is you get progresive weakness of muscles as the day goes on becuase of this partial blockade at the neuromuscular junction of of your neurotransmittors which are the chemical signals that allow neurons to talk
2006-12-06 23:00:02
·
answer #1
·
answered by Alex 2
·
0⤊
0⤋
MYASTHENIA GRAVIS - A SUMMARY
James F. Howard, Jr., M.D.
Department of Neurology
The University of North Carolina at Chapel Hill
Myasthenia gravis (MG) is the most common primary disorder of neuromuscular transmission. The usual cause is an acquired immunological abnormality, but some cases result from genetic abnormalities at the neuromuscular junction. Much has been learned about the pathophysiology and immunopathology of myasthenia gravis during the past 20 years. What was once a relatively obscure condition of interest primarily to neurologists is now the best characterized and understood autoimmune disease. A wide range of potentially effective treatments are available, many of which have implications for the treatment of other autoimmune disorders.
EPIDEMIOLOGY
The prevalence of myasthenia gravis in the United States is estimated at 14 to 20 per 100,000 population, approximately 36,000 to 60,000 cases in the United States. However, myasthenia gravis is probably under diagnosed and the prevalence is probably higher. Previous studies showed that women are more often affected than men. The most common age at onset is the second and third decades in women and the seventh and eighth decades in men. As the population ages, the average age at onset has increased correspondingly, and now males are more often affected than females, and the onset of symptoms is usually after age 50.
CLINICAL PRESENTATION
Patients with myasthenia gravis come to the physician complaining of specific muscle weakness and not of generalized fatigue. Ocular motor disturbances, ptosis or diplopia, are the initial symptom of myasthenia gravis in two-thirds of patients; almost all had both symptoms within 2 years. Oropharyngeal muscle weakness, difficulty chewing tough, chewy or fibrous foods, swallowing, or talking, is the initial symptom in one-sixth of patients, and limb weakness in only 10%. Initial weakness is rarely limited to single muscle groups such as neck or finger extensors or hip flexors. The severity of weakness fluctuates during the day, usually being least severe in the morning and worse as the day progresses, especially after prolonged use of affected muscles.
The course of disease is variable but usually progressive. Weakness is restricted to the ocular muscles in about 10% to 40% of cases. The rest have progressive weakness during the first 2 years that involves oropharyngeal and limb muscles. Maximum weakness occurs during the first year in two-thirds of patients. In the era before corticosteroids were used for treatment, approximately one-third of patients improved spontaneously, one-third became worse, and one-third died of the disease. Spontaneous improvement frequently occurred early in the course. Symptoms fluctuated over a relatively short period of time and then became progressively severe for several years (active stage). The active stage is followed by an inactive state in which fluctuations in strength still occurred but are attributable to fatigue, intercurrent illness, or other identifiable factors. After 15 to 20 years, weakness often becomes fixed and the most severely involved muscles are frequently atrophic (burnt-out stage). Factors that worsen myasthenic symptoms are emotional upset, systemic illness (especially viral respiratory infections), hypothyroidism or hyperthyroidism, pregnancy, the menstrual cycle, drugs affecting neuromuscular transmission, and increases in body temperature.
PATHOPHYSIOLOGY OF MYASTHENIA GRAVIS
The normal neuromuscular junction releases acetylcholine (ACh) from the motor nerve terminal in discrete packages (quanta). The ACh quanta diffuse across the synaptic cleft and bind to receptors on the folded muscle end-plate membrane. Stimulation of the motor nerve releases many ACh quanta that depolarize the muscle end-plate region and then the muscle membrane causing muscle contraction. In acquired myasthenia gravis, the post-synaptic muscle membrane is distorted and simplified, having lost its normal folded shape. The concentration of ACh receptors on the muscle end-plate membrane is reduced, and antibodies are attached to the membrane. ACh is released normally, but its effect on the post-synaptic membrane is reduced. The post-junctional membrane is less sensitive to applied ACh, and the probability that any nerve impulse will cause a muscle action potential is reduced.
THE THYMUS IN MYASTHENIA GRAVIS
Thymic abnormalities are clearly associated with myasthenia gravis but the nature of the association is uncertain. Ten percent of patients with myasthenia gravis have a thymic tumor and 70% have hyperplastic changes (germinal centers) that indicate an active immune response. These are areas within lymphoid tissue where B-cells interact with helper T-cells to produce antibodies. Because the thymus is the central organ for immunological self-tolerance, it is reasonable to suspect that thymic abnormalities cause the breakdown in tolerance that causes an immune-mediated attack on AChR in myasthenia gravis. The thymus contains all the necessary elements for the pathogenesis of myasthenia gravis: myoid cells that express the AChR antigen, antigen presenting cells, and immunocompetent T-cells. Thymus tissue from patients with myasthenia gravis produces AChR antibodies when implanted into immunodeficient mice. However, it is still uncertain whether the role of the thymus in the pathogenesis of myasthenia gravis is primary or secondary.
Most thymic tumors in patients with myasthenia gravis are benign, well-differentiated and encapsulated, and can be removed completely at surgery. It is unlikely that thymomas result from chronic thymic hyperactivity because myasthenia gravis can develop years after thymoma removal and the HLA haplotypes that predominate in patients with thymic hyperplasia are different from those with thymomas. Patients with thymoma usually have more severe disease, higher levels of AChR antibodies, and more severe EMG abnormalities than patients without thymoma. Almost 20% of patients with myasthenia gravis whose symptoms began between the ages of 30 and 60 years have thymoma; the frequency is much lower when symptom onset is after age 60.
DIAGNOSTIC PROCEDURES
The diagnosis of MG is often delayed months or even years (in the mildest cases). The unusual distribution and fluctuating symptoms often suggests psychiatric disease. Patients with drooping eyelids, double vision and difficulty with speech or swallowing symptoms suggest intracranial pathology and often lead to an evaluation for stroke, brain tumor or multiple sclerosis. Patients with anti-MuSK-antibody positive MG may have focal or regional weakness and muscle atrophy that are more suggestive of motor neuron or muscle membrane (myopathy) disease.
2006-12-07 02:29:15
·
answer #3
·
answered by Anonymous
·
0⤊
0⤋