Planets
The planet Mercury is very difficult to study from the Earth because it is always so close to the Sun. Even at elongation, it is never more than 28 degrees from the Sun in our sky. It is the second smallest planet (it was believed to be the smallest until the discovery that Pluto is actually much smaller than originally thought), and also the fastest in its orbit since it is the innermost planet. In fact, the name Mercury derives from its speed in moving around its orbit.
Venus is the second planet from the Sun and the sixth largest. Venus' orbit is the most nearly circular of that of any planet, with an eccentricity of less than 1%.
orbit: 108,200,000 km (0.72 AU) from Sun
diameter: 12,103.6 km
mass: 4.869e24 kg
Earth is the third planet from the Sun and the fifth largest:
orbit: 149,600,000 km (1.00 AU) from Sun
diameter: 12,756.3 km
mass: 5.972e24 kg
Mars is the fourth planet from the Sun and the seventh largest:
orbit: 227,940,000 km (1.52 AU) from Sun
diameter: 6,794 km
mass: 6.4219e23 kg
Jupiter is the fifth planet from the Sun and by far the largest. Jupiter is more than twice as massive as all the other planets combined (the mass of Jupiter is 318 times that of Earth).
orbit: 778,330,000 km (5.20 AU) from Sun
diameter: 142,984 km (equatorial)
mass: 1.900e27 kg
Saturn is the sixth planet from the Sun and the second largest:
orbit: 1,429,400,000 km (9.54 AU) from Sun
diameter: 120,536 km (equatorial)
mass: 5.68e26 kg
Uranus is the seventh planet from the Sun and the third largest (by diameter). Uranus is larger in diameter but smaller in mass than Neptune.
orbit: 2,870,990,000 km (19.218 AU) from Sun
diameter: 51,118 km (equatorial)
mass: 8.683e25 kg
Neptune is the eighth planet from the Sun and the fourth largest (by diameter). Neptune is smaller in diameter but larger in mass than Uranus.
orbit: 4,504,000,000 km (30.06 AU) from Sun
diameter: 49,532 km (equatorial)
mass: 1.0247e26 kg
THE BLACK HOLE
A black hole is defined to be a region of space-time where escape to the outside universe is impossible. The boundary of this region is a surface called the event horizon. This surface is not a physically tangible one, but merely a figurative concept of an imaginary boundary. Nothing can move from inside the event horizon to the outside, even briefly.
2006-12-02 18:59:31
·
answer #1
·
answered by saharsh s 2
·
1⤊
0⤋
The four inner or terrestrial planets are characterised by their dense, rocky composition, few or no moons, and lack of ring systems. They are composed largely of minerals with high melting points, such as the silicates which form their solid crusts and semi-liquid mantles, and metals such as iron and nickel, which form their cores. Three of the four inner planets (Venus, Earth and Mars) have substantial atmospheres. All have impact craters and possess tectonic surface features, such as rift valleys and volcanoes. The term inner planet should not be confused with inferior planet, which designates those planets which are closer to the Sun than the Earth is (i.e. Mercury and Venus).
The four inner planets are:
Mercury
Mercury (0.4 AU), the closest planet to the Sun, is also the least massive of the planets, at only 0.055 Earth masses. Mercury has a very thin atmosphere consisting of atoms blasted off its surface by the solar wind. Because Mercury is so hot, these atoms quickly escape into space. Thus in contrast to the Earth and Venus whose atmospheres are stable, Mercury's atmosphere is constantly being replenished.[25] It has no natural satellite, and it's only known geological features besides impact craters are "wrinkle ridges" probably produced by a period of contraction early in its history. Its relatively large iron core and thin mantle have not yet been adequately explained. Hypotheses include that its outer layers were stripped off by a giant impact, and that it was prevented from fully accreting by the Sun's gravity.
Venus
Venus (0.7 AU) is of comparable mass to the Earth (0.815 Earth masses), and, like Earth, possesses a thick silicate mantle around an iron core, as well as a substantial atmosphere and evidence of internal geological activity, such as volcanoes. However, it is much drier than Earth and its atmosphere is 90 times as dense and is composed overwhelmingly (96.5%) of carbon dioxide. Venus has no natural satellite. It is the hottest planet, despite being farther from the sun than Mercury, with temperatures reaching more than 400 degrees Celsius. This is most likely because of the amount of greenhouse gases in the atmosphere. Although no definitive evidence of geological activity has yet been detected on Venus, its substantial atmosphere and lack of a magnetic field to protect it from depletion by the solar wind suggest that it must be regularly replenished by volcanic eruptions, perhaps as massive, global volcanic events which resurface the entire planet at a stroke, though other studies have shown that these events may have been continuous rather than instantaneous. [26]
EARTH The largest and densest of the inner planets, Earth (1 AU) is also the only one to demonstrate unequivocal evidence of current geological activity. Earth is the only planet known to have life. Its liquid hydrosphere, unique among the terrestrial planets, is probably the reason Earth is also the only planet where plate tectonics has been observed, because water acts as a lubricant for subduction.[27] Its atmosphere is radically different from the other terrestrial planets, having been altered by the presence of life to contain 21 percent free oxygen. It has one satellite, the Moon; the only large satellite of a terrestrial planet in the Solar System. In fact, the Moon is in co-orbit around the Sun with the Earth; its annual orbit around the Sun is essentially circular.[28] The Moon possesses many features in common with other terrestrial planets, though differs in that its core is much smaller.[29]
Mars
Mars (1.5 AU), at only 0.107 Earth masses, is less massive than either Earth or Venus. It possesses a tenuous atmosphere of carbon dioxide. Its surface, peppered with vast volcanoes and rift valleys such as Valles Marineris, shows that it was once geologically active and recent evidence[30] suggests this may have been true until very recently. Mars possesses two tiny moons (Deimos and Phobos) thought to be captured asteroids.
Asteroid belt
Main article: Asteroid belt
Image of the main asteroid belt and the Trojan asteroids.Asteroids are mostly small solar system bodies that are composed in significant part of rocky and metallic non-volatile minerals.
The main asteroid belt occupies the orbit between Mars and Jupiter, between 2.3 and 3.3 AU from the Sun. It is thought to be the remnants from the Solar System's formation that failed to coalesce because of the gravitational interference of Jupiter. Asteroids range in size from hundreds of kilometers to as small as dust. All asteroids save the largest, Ceres, are classified as small solar system bodies; however, a number of other asteroids, such as Vesta and Hygeia, could potentially be reclassed as dwarf planets if it can be conclusively shown that they have achieved hydrostatic equilibrium. The asteroid belt contains tens of thousands - and potentially millions - of objects over one kilometre in diameter.[31] However, despite their large numbers, the total mass of the main belt is unlikely to be more than a thousandth of that of the Earth.[32] In contrast to its various depictions in science fiction, the main belt is very sparsely populated; spacecraft routinely pass through without incident. Asteroids with a diameter of less than 50 m are called meteoroids.
Ceres
CeresCeres (2.77 AU) is the largest astronomical body in the asteroid belt and the only known dwarf planet in this region. It has a diameter of slightly under 1000 km, large enough for its own gravity to pull it into a spherical shape. Ceres was considered a planet when it was discovered in the nineteenth century, but was reclassified as an asteroid as further observation revealed additional asteroids.[33] It has since been again reclassified as a dwarf planet.
Asteroid groups
Asteroids in the main belt are subdivided into asteroid groups and families based on their specific orbital characteristics. Asteroid moons are asteroids that orbit larger asteroids. They are not as clearly distinguished as planetary moons, sometimes being almost as large as their partners. The asteroid belt also contains main-belt comets[34] which may have been the source of Earth's water.
Trojan asteroids are located in either of Jupiter's L4 or L5 points, (gravitationally stable regions leading and trailing a planet in its orbit) though the term is also sometimes used for asteroids in any other planetary Lagrange point as well. Hilda asteroids are those Trojans whose orbits are in a 2:3 resonance with Jupiter; that is, they go around the Sun three times for every two Jupiter orbits.
The inner solar system is also dusted with rogue asteroids, many of which cross the orbits of the inner planets.
Outer planets
Main article: Gas giant
From top to bottom: Neptune, Uranus, Saturn, and Jupiter (sizes not to scale).The four outer planets, or gas giants, (sometimes called Jovian planets) are so large they collectively make up 99 percent of the mass known to orbit the Sun. Jupiter and Saturn are true giants, at 318 and 95 Earth masses, respectively, and composed largely of hydrogen and helium. Uranus and Neptune are both substantially smaller, being only 14 and 17 Earth masses, respectively. Their atmospheres contain a smaller percentage of hydrogen and helium, and a higher percentage of “ices”, such as water, ammonia and methane. For this reason some astronomers suggested that they belong in their own category, “Uranian planets,” or “ice giants.” All four of the gas giants exhibit orbital debris rings, although only the ring system of Saturn is easily observable from Earth. The term outer planet should not be confused with superior planet, which designates those planets which lie outside Earth's orbit (thus consisting of the outer planets plus Mars).
Jupiter
Jupiter (5.2 AU), at 318 Earth masses, is 2.5 times the mass of all the other planets put together. Its composition of largely hydrogen and helium is not very different from that of the Sun, and the planet has been described as a "failed star". Jupiter's strong internal heat creates a number of semi-permanent features in its atmosphere, such as cloud bands and the Great Red Spot. The four largest of its 63 satellites, Ganymede, Callisto, Io, and Europa (the Galilean satellites) share elements in common with the terrestrial planets, such as volcanism and internal heating. Ganymede, the largest satellite in the Solar System, has a diameter larger than Mercury.
Saturn
Saturn (9.5 AU), famous for its extensive ring system, has many qualities in common with Jupiter, including its atmospheric composition, though it is far less massive, being only 95 Earth masses. Two of its 56 moons, Titan and Enceladus, show signs of geological activity, though they are largely made of ice. Titan, like Ganymede, is larger than Mercury; it is also the only satellite in the solar system with a substantial atmosphere, similar in composition to that of the atmosphere of the early Earth.
Uranus
Uranus (19.6 AU) at 14 Earth masses, is the lightest of the outer planets. Uniquely among the planets, it orbits the Sun on its side; its axial tilt lies at over ninety degrees to the ecliptic. Its core is remarkably cold compared with the other gas giants, and radiates very little heat into space. Uranus has 27 satellites, the largest being Titania, Oberon, Umbriel, Ariel and Miranda.
Neptune
Neptune (30 AU), though slightly smaller than Uranus, is denser and slightly more massive, at 17 Earth masses, and radiates more internal heat than Uranus, but not as much as Jupiter or Saturn. Its peculiar ring system is composed of a number of dense "arcs" of material separated by gaps. Neptune has 13 moons. The largest, Triton, is geologically active, with geysers of liquid nitrogen, and is the only large satellite to revolve around its host planet in a prograde (clockwise) motion. Neptune possesses a number of Trojan asteroids.
Kuiper belt
Diagram showing the resonant and classical Kuiper beltThe area beyond Neptune, often referred to as the outer solar system or simply the "trans-Neptunian region", is still largely unexplored.
This region's first formation is the Kuiper belt, a great ring of debris, similar to the asteroid belt but composed mainly of ice and far greater in extent, which lies between 30 and 50 AU from the Sun. This region is thought to be the place of origin for short-period comets, such as Halley's comet. Though it is composed mainly of small solar system bodies, many of the largest Kuiper belt objects could soon be reclassified as dwarf planets. There are estimated to be over 100,000 Kuiper belt objects with a diameter greater than 50 km; however, the total mass of the Kuiper belt is relatively low, perhaps barely equalling the mass of the Earth.[35] Many Kuiper belt objects have multiple satellites and most have orbits that take them outside the plane of the ecliptic.
The Kuiper belt can be roughly divided into two regions: the "resonant" belt, consisting of objects whose orbits are in some way linked to that of Neptune (orbiting, for instance, three times for every two Neptune orbits, or twice for every one), which actually begins within the orbit of Neptune itself, and the "classical" belt, consisting of objects that don't have any resonance with Neptune, and which extends from roughly 39.4 AU to 47.7 AU.[36] Members of the classical Kuiper belt are classified as Cubewanos, after the first of their kind to be discovered, 1992 QB1.
Pluto and Charon
Pluto, and its three known moonsPluto (39 AU average), is the largest known object in the Kuiper belt and was previously accepted as the smallest planet in the Solar System. In 2006, it was reclassified as a dwarf planet by the Astronomers Congress organized by the International Astronomers Union (IAU).[37] Pluto has a relatively eccentric orbit inclined 17 degrees to the ecliptic plane and ranging from 29.7 AU from the Sun at perihelion (within the orbit of Neptune) to 49.5 AU at aphelion. Prior to the 2006 redefinitions, Charon was considered a moon of Pluto, but in light of the redefinition it is unclear whether Charon will continue to be classified as a moon of Pluto or as a dwarf planet itself. Charon does not exactly orbit Pluto in a traditional sense; Charon is about one-tenth the mass of Pluto and the center of gravity of the pair is not within Pluto. Both bodies orbit a barycenter of gravity above the surface of Pluto (in empty space), making Pluto-Charon a binary system. Two much smaller moons, Nix and Hydra, orbit Pluto and Charon. Those Kuiper belt objects which, like Pluto, possess a 3:2 orbital resonance with Neptune (ie, they orbit twice for every three Neptunian orbits) are called Plutinos.
A black hole is an object predicted by general relativity[1] with a gravitational field so strong that nothing can escape it — not even light.
A black hole is defined to be a region of space-time where escape to the outside universe is impossible. The boundary of this region is a surface called the event horizon. This surface is not a physically tangible one, but merely a figurative concept of an imaginary boundary. Nothing can move from inside the event horizon to the outside, even briefly.
Theoretically, a black hole can be any size. Astrophysicists expect to find black holes with masses ranging between roughly the mass of the Sun ("stellar-mass" black holes) to many millions of times the mass of the Sun (supermassive black holes).
The existence of black holes in the universe is well supported by astronomical observation, particularly from studying X-ray emission from X-ray binaries and active galactic nuclei. It has also been hypothesized that black holes radiate energy due to quantum mechanical effects known as Hawking radiation.
2006-12-01 22:42:30
·
answer #10
·
answered by MYTH 1
·
0⤊
1⤋