English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-10-25 21:01:36 · 5 answers · asked by Dean V 1 in Science & Mathematics Mathematics

5 answers

let y = sec²x/tanx
Now sec²x = tan²x + 1
So y = (tan²x + 1)/tanx
= tanx + cotx
So dy/dx = sec²x - cosec²x

2006-10-25 23:22:02 · answer #1 · answered by Wal C 6 · 0 0

sec^2x / tan x = (1+tan^2 x)/tan x = cot x + tan x

now it can be differentiated as

- cosec^2 x + sec ^2 x

2006-10-26 05:20:31 · answer #2 · answered by Mein Hoon Na 7 · 0 0

Look at it this way;
sec = 1/cos
tan = sin/cos
So sec2 = cos/sin = 1/tan = cot.
That should be on one of your tables.

2006-10-26 04:08:03 · answer #3 · answered by tgypoi 5 · 0 1

We have:
sec² x/tan x
1/cos² x * cos x/sin x
1/(sin x cos x)
(sin x cos x)^(-1)

Using the chain rule:

dy/dx = -(sin x cos x)^(-2) * (cos² x - sin² x)
sin²x/(sin² x cos² x) - cos² x/(cos² x sin² x)
sec² x - csc² x

2006-10-26 04:08:10 · answer #4 · answered by Pascal 7 · 0 0

sec^2(x)=1/cos^2(x)------------(i)
and
tan(x)=sin(x)/cos(x)------------(ii)
from (i) and (ii)
sec^2(x)/tan(x)={1/cos^2(x)}/{sin(x)/cos(x)}

={1/cos^2(x)}X{cos(x)/sin(x)}

=cos(x)/cos^2(x)sin(x)

=1/{sin(x)cos(x)}

[sin(2x)=2sin(x)cos(x) therefor {sin(x)cos(x)} =sin(2x)/2

because of that
y= sec^2(x)/tan(x)=1/[sin(2x)/2]

y =2/sin(2x)

y =2cosec(2x)
then we can diffrenshad it
dy/dx=-{2cosec(2x)cot(2x)}X{d(2x)/dx}

=-4cosec(2x)cot(2x)

=-4{1/sin(2x)}{cos(2x)/sin(2x)}

=-4cos(2x)/sin^2(2x)

now it,s finished.like this you must make that large fountain to a small fountain.then it will make eazy to find dy/dx.

2006-10-26 05:25:50 · answer #5 · answered by amila 1 · 0 0

fedest.com, questions and answers