English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

what is the theory and appications and relevant softwares?

2006-10-03 05:18:47 · 2 answers · asked by rabad_2k 1 in Science & Mathematics Engineering

2 answers

Computational Fluid Dynamics (CFD) is one of the branchs of fluid mechanics that uses numerical methods and algorithms to solve and analyze problems that involve fluid flows.

For software details ...
http://www.cfd-online.com/

Background and History
The fundamental basis of any CFD problem is the Navier-Stokes equations, which define any single-phase fluid flow. These equations can be simplified by removing terms describing viscosity to yield the Euler equations. Further simplification, by removing terms describing vorticity yields the Full Potential equations. Finally, these equations can be linearized to yield the Linearized Potential equations.

Historically, methods were first developed to solve the Linearized Potential equations. Two-dimensional methods, using conformal transformations of the flow about a cylinder to the flow about an airfoil were developed in the 1930s. The computer power available paced development of three-dimensional methods. The first paper on a practical three-dimensional method to solve the Linearized Potential equations was published by John Hess and A.M.O. Smith of Douglas Aircraft in 1966. This method discretized the surface of the geometry with panels, giving rise to this class of programs being called Panel Methods. Their method itself was simplified, in that it did not include lifting flows and hence was mainly applied to ship hulls and aircraft fuselages. The first lifting Panel Code (A230) was described in a paper written by Paul Rubbert and Gary Saaris of Boeing Aircraft in 1968. In time, more advanced three-dimensional Panel Codes were developed at Boeing (PANAIR, A502), Lockheed (Quadpan), Douglas (HESS), McDonnell Aircraft (MACAERO), NASA (PMARC) and Analytical Methods (WBAERO, USAERO and VSAERO). Some (PANAIR, HESS and MACAERO) were higher order codes, using higher order distributions of surface singularities, while others (Quadpan, PMARC, USAERO and VSAERO) used single singularities on each surface panel. The advantage of the lower order codes was that they ran much faster on the computers of the time. Today, VSAERO has grown to be a multi-order code and is the most widely used program of this class. This program has been used in the development of many submarines, surface ships, automobiles, helicopters and aircraft. Its sister code, USAERO is an unsteady panel method that has also been used for modeling such things as high speed trains and racing yachts. The NASA PMARC code was developed from an early version of VSAERO and a derivative of PMARC, named CMARC, is also commercially available.

In the two-dimensional realm, quite a number of Panel Codes have been developed for airfoil analysis and design. These codes typically have a boundary layer analysis included, so that viscous effects can be modeled. Professor Richard Eppler of the University fo Stuttgart developed the PROFIL code, partly with NASA funding, which became available in the early 1980s. This was soon followed by MIT Professor Mark Drela's Xfoil code. Both PROFIL and Xfoil incorporate two-dimensional panel codes, with coupled boundary layer codes for airfoil analysis work. PROFIL uses a conformal transformation method for inverse airfoil design, while Xfoil has both a conformal transformation and a inverse panel method for airfoil design. Both codes are widely used.

An intermediate step between Panel Codes and Full Potential codes were codes that used the Transonic Small Disturbance equations. In particular, the three-dimensional WIBCO code, developed by Charlie Boppe of Grumman Aircraft in the early 1980s has seen heavy use.

Developers next turned to Full Potential codes, as panel methods could not calculate the non-linear flow present at transonic speeds. The first description of a means of using the Full Potential equations was published by Earll Murman and Julian Cole of Boeing in 1970. Frances Bauer, Paul Garabedian and David Korn of the Courant Institute at NYU wrote a series of two-dimensional Full Potential airfoil codes that were widely used, the most important being named Program H. A further growth of Progam H was developed by Bob Melnik and his group at Grumman Aerospace as Grumfoil. Antony Jameson, originally at Grumman Aircraft and the Courant Institute of NYU, worked with David Caughey to develop the important three-dimensional Full Potential code FLO22 in 1975. Many Full Potential codes emerged after this, culminating in Boeing's Tranair (A633) code, which still sees heavy use.

The next step was the Euler equations, which promised to provide more accurate solutions of transonic flows. The methodology used by Jameson in his three-dimensional FLO57 code (1981) was used by others to produce such programs as Lockheed's TEAM program and IAI/Analytical Methods' MGAERO program. MGAERO is unique in being a structured cartesian mesh code, while most other such codes use structured body-fitted grids (with the exception of NASA's TIGER/CART3D code, Lockheed's SPLITFLOW code and Georgia Tech's NASCART-GT, which is infact a Navier-Stokes solver). Jameson also developed the three-dimensional AIRPLANE code (1985) which made use of unstructured tetrahedral grids.

In the two-dimensional realm, Mark Drela and Michael Giles, then graduate students at MIT, developed the ISES Euler program (actually a suite of programs) for airfoil design and analysis. This code first became available in 1986 and has been further developed to design, analyze and optimize single or multi-element airfoils, as the MSES program. MSES sees wide use throughout the world. A derivative of MSES, for the design and analysis of airfoils in a cascade, is MISES, developed by Harold "Guppy" Youngren while he was a graduate student at MIT.

The Navier-Stokes equations were the ultimate target of developers. Two-dimensional codes, such as NASA Ames' ARC2D code first emerged. A number of three-dimensional codes were developed, leading to the full commercial packages such as Fluent, CFD++ and Star-CD.

2006-10-03 05:30:54 · answer #1 · answered by ammassridhar 3 · 0 0

Try Google.

2006-10-03 05:42:53 · answer #2 · answered by ag_iitkgp 7 · 0 0

fedest.com, questions and answers