English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-09-12 00:29:28 · 4 answers · asked by Anonymous in Science & Mathematics Botany

4 answers

produces pollen.

2006-09-12 00:34:22 · answer #1 · answered by hobo100 1 · 1 0

Polleniferous plant produce herbal medicines which are used as remedies for kidney diseases, skin diseases, gastrointestinal diseases, for toothache, malaria, as antimicrobial and sexual tonic,etc.
There are various studies going on with polleniferous plants' medicinal values..

2006-09-12 15:51:09 · answer #2 · answered by ♥ lani s 7 · 0 1

they produce pollens and pores definately...

2006-09-12 07:32:03 · answer #3 · answered by Anonymous · 0 0

The species, therefore, is polygamous in the sense in which I use the term, and trioecious. The flowers are frequented by many Diptera and some small Hymenoptera for the sake of the nectar secreted by the disc, but I did not see a single bee at work; nevertheless the other insects sufficed to fertilise effectually female bushes growing at a distance of even 30 yards from any polleniferous bush.

I selected one of the finest branches with 15 fruit, and these contained 20 seeds, or on an average 1.33 per fruit. I then took by hazard 15 fruit from an adjoining female bush, and these contained 43 seeds; that is, more than twice as many, or on an average 2.86 per fruit. Many of the fruits from the female bushes included four seeds, and only one had a single seed; whereas not one fruit from the polleniferous bushes contained four seeds. Moreover when the two lots of seeds were compared, it was manifest that those from the female bushes were the larger. The second polleniferous bush, D, bore in 1863 about two dozen fruit,--in 1864 only 3 very poor fruit, each containing a single seed,--and in 1865, 20 equally poor fruit. Lastly, the three polleniferous bushes, E, F, and G, did not produce a single fruit during the three years 1863, 1864, and 1865.

We thus see that the female bushes differ somewhat in their degree of fertility, and the polleniferous ones in the most marked manner. We have a perfect gradation from the female bush, B, which in 1865 was covered with "innumerable fruits,"--through the female A, which produced during the same year 97,--through the polleniferous bush C, which produced this year 92 fruits, these, however, containing a very low average number of seeds of small size,--through the bush D, which produced only 20 poor fruit,--to the three bushes, E, F, and G, which did not this year, or during the two previous years, produce a single fruit. If these latter bushes and the more fertile female ones were to supplant the others, the spindle-tree would be as strictly dioecious in function as any plant in the world. This case appears to me very interesting, as showing how gradually an hermaphrodite plant may be converted into a dioecious one. (7/7. According to Fritz Muller 'Botanische Zeitung' 1870 page 151, a Chamissoa (Amaranthaceae) in Southern Brazil is in nearly the same state as our Euonymus. The ovules are equally developed in the two forms. In the female the pistil is perfect, whilst the anthers are entirely destitute of pollen. In the polleniferous form, the pistil is short and the stigmas never separate from one another, so that, although their surfaces are covered with fairly well-developed papillae, they cannot be fertilised, these latter plants do not commonly yield any fruit, and are therefore in function males. Nevertheless, on one occasion Fritz Muller found flowers of this kind in which the stigmas had separated, and they produced some fruit.)

Seeing how general it is for organs which are almost or quite functionless to be reduced in size, it is remarkable that the pistils of the polleniferous plants should equal or even exceed in length those of the highly fertile female plants. This fact formerly led me to suppose that the spindle-tree had once been heterostyled; the hermaphrodite and male plants having been originally long- styled, with the pistils since reduced in length, but with the stamens retaining their former dimensions; whilst the female plant had been originally short- styled, with the pistil in its present state, but with the stamens since greatly reduced and rendered rudimentary. A conversion of this kind is at least possible, although it is the reverse of that which appears actually to have occurred with some Rubiaceous genera and Aegiphila; for with these plants the short-styled form has become the male, and the long-styled the female. It is, however, a more simple view that sufficient time has not elapsed for the reduction of the pistil in the male and hermaphrodite flowers of our Euonymus; though this view does not account for the pistils in the polleniferous flowers being sometimes longer than those in the female flowers.


The small anthers borne by the short stamens of the female flowers are well formed and dehisce properly, but I could never find in them a single grain of pollen. It is somewhat difficult to compare the length of the pistils in the two forms, as they vary somewhat in this respect and continue to grow after the anthers are mature. The pistils, therefore, in old flowers on a polleniferous plant are often of considerably greater length than in young flowers on a female plant. On this account the pistils from five flowers from so many hermaphrodite or male bushes were compared with those from five female bushes, before the anthers had dehisced and whilst the rudimentary ones were of a pink colour and not at all shrivelled. These two sets of pistils did not differ in length, or if there was any difference those of the polleniferous flowers were rather the longest. In one hermaphrodite plant, which produced during three years very few and poor fruit, the pistil much exceeded in length the stamens bearing perfect and as yet closed anthers; and I never saw such a case on any female plant. It is a surprising fact that the pistil in the male and in the semi-sterile hermaphrodite flowers has not been reduced in length, seeing that it performs very poorly or not at all its proper function. The stigmas in the two forms are exactly alike; and in some of the polleniferous plants which never produced any fruit I found that the surface of the stigma was viscid, so that pollen-grains adhered to it and had exserted their tubes. The ovules are of equal size in the two forms. Therefore the most acute botanist, judging only by structure, would never have suspected that some of the bushes were in function exclusively males.

Thirteen bushes growing near one another in a hedge consisted of eight females quite destitute of pollen and of five hermaphrodites with well-developed anthers. In the autumn the eight females were well covered with fruit, excepting one, which bore only a moderate number. Of the five hermaphrodites, one bore a dozen or two fruits, and the remaining four bushes several dozen; but their number was as nothing compared with those on the female bushes, for a single branch, between two and three feet in length, from one of the latter, yielded more than any one of the hermaphrodite bushes. The difference in the amount of fruit produced by the two sets of bushes is all the more striking, as from the sketches above given it is obvious that the stigmas of the polleniferous flowers can hardly fail to receive their own pollen; whilst the fertilisation of the female flowers depends on pollen being brought to them by flies and the smaller Hymenoptera, which are far from being such efficient carriers as bees.

I now determined to observe more carefully during successive seasons some bushes growing in another place about a mile distant. As the female bushes were so highly productive, I marked only two of them with the letters A and B, and five polleniferous bushes with the letters C to G. I may premise that the year 1865 was highly favourable for the fruiting of all the bushes, especially for the polleniferous ones, some of which were quite barren except under such favourable conditions. The season of 1864 was unfavourable. In 1863 the female A produced "some fruit;" in 1864 only 9; and in 1865, 97 fruit. The female B in 1863 was "covered with fruit;" in 1864 it bore 28; and in 1865 "innumerable very fine fruits." I may add, that three other female trees growing close by were observed, but only during 1863, and they then bore abundantly. With respect to the polleniferous bushes, the one marked C did not bear a single fruit during the years 1863 and 1864, but during 1865 it produced no less than 92 fruit, which, however, were very poor

I selected one of the finest branches with 15 fruit, and these contained 20 seeds, or on an average 1.33 per fruit. I then took by hazard 15 fruit from an adjoining female bush, and these contained 43 seeds; that is, more than twice as many, or on an average 2.86 per fruit. Many of the fruits from the female bushes included four seeds, and only one had a single seed; whereas not one fruit from the polleniferous bushes contained four seeds. Moreover when the two lots of seeds were compared, it was manifest that those from the female bushes were the larger. The second polleniferous bush, D, bore in 1863 about two dozen fruit,--in 1864 only 3 very poor fruit, each containing a single seed,--and in 1865, 20 equally poor fruit. Lastly, the three polleniferous bushes, E, F, and G, did not produce a single fruit during the three years 1863, 1864, and 1865.

We thus see that the female bushes differ somewhat in their degree of fertility, and the polleniferous ones in the most marked manner. We have a perfect gradation from the female bush, B, which in 1865 was covered with "innumerable fruits,"--through the female A, which produced during the same year 97,--through the polleniferous bush C, which produced this year 92 fruits, these, however, containing a very low average number of seeds of small size,--through the bush D, which produced only 20 poor fruit,--to the three bushes, E, F, and G, which did not this year, or during the two previous years, produce a single fruit. If these latter bushes and the more fertile female ones were to supplant the others, the spindle-tree would be as strictly dioecious in function as any plant in the world. This case appears to me very interesting, as showing how gradually an hermaphrodite plant may be converted into a dioecious one. (7/7. According to Fritz Muller 'Botanische Zeitung' 1870 page 151, a Chamissoa (Amaranthaceae) in Southern Brazil is in nearly the same state as our Euonymus. The ovules are equally developed in the two forms. In the female the pistil is perfect, whilst the anthers are entirely destitute of pollen. In the polleniferous form, the pistil is short and the stigmas never separate from one another, so that, although their surfaces are covered with fairly well-developed papillae, they cannot be fertilised, these latter plants do not commonly yield any fruit, and are therefore in function males. Nevertheless, on one occasion Fritz Muller found flowers of this kind in which the stigmas had separated, and they produced some fruit.)

Seeing how general it is for organs which are almost or quite functionless to be reduced in size, it is remarkable that the pistils of the polleniferous plants should equal or even exceed in length those of the highly fertile female plants. This fact formerly led me to suppose that the spindle-tree had once been heterostyled; the hermaphrodite and male plants having been originally long- styled, with the pistils since reduced in length, but with the stamens retaining their former dimensions; whilst the female plant had been originally short- styled, with the pistil in its present state, but with the stamens since greatly reduced and rendered rudimentary. A conversion of this kind is at least possible, although it is the reverse of that which appears actually to have occurred with some Rubiaceous genera and Aegiphila; for with these plants the short-styled form has become the male, and the long-styled the female. It is, however, a more simple view that sufficient time has not elapsed for the reduction of the pistil in the male and hermaphrodite flowers of our Euonymus; though this view does not account for the pistils in the polleniferous flowers being sometimes longer than those in the female flowers.

from page no 127
THE DIFFERENT FORMS OF FLOWERS ON PLANTS OF THE SAME SPECIES - Charles Darwin

2006-09-12 09:52:50 · answer #4 · answered by nanobot 1 · 0 1

fedest.com, questions and answers