What are the lengths of the sides?
Why would that be helpful to know?
What kind of triangle does it create?
Why would that be helpful to know?
2006-09-11 14:13:23
·
answer #1
·
answered by Anonymous
·
0⤊
0⤋
(-4,2) and (4,3)
D = sqrt((4 - (-4))^2 + (3 - 2)^2)
D = sqrt((4 + 4)^2 + 1^2)
D = sqrt(8^2 + 1)
D = sqrt(64 + 1)
D = sqrt(65)
(4,3) and (1,-3)
D = sqrt((1 - 4)^2 + (-3 - 3)^2)
D = sqrt((-3)^2 + (-3 + (-3))^2)
D = sqrt(9 + (-6)^2)
D = sqrt(9 + 36)
D = sqrt(45)
(-4,2) and (1,-3)
D = sqrt((1 - (-4))^2 + (-3 - 2)^2)
D = sqrt((1 + 4)^2 + (-3 + (-2))^2)
D = sqrt(5^2 + (-5)^2)
D = sqrt(25 + 25)
D = sqrt(50)
c^2 = a^2 + b^2 - 2ab(cos(C))
sqrt(65)^2 = sqrt(45)^2 + sqrt(50)^2 - 2(sqrt(45)sqrt(50))cos(C)
65 = 45 + 50 - 2sqrt(2250)cos(C)
65 = 95 - 2sqrt(225 * 10)cos(C)
-30 = -30sqrt(10)cos(C)
1 = sqrt(10)cosC
cosC = 1/(sqrt(10))
cosC = (sqrt(10))/10
C = about 71.565°
a^2 = b^2 + c^2 - 2bc(cosA)
sqrt(45)^2 = sqrt(50)^2 + sqrt(65)^2 - 2(sqrt(65) * sqrt(50))cosA
45 = 50 + 65 - 2sqrt(3250)cosA
45 = 115 - 2sqrt(25 * 130)cosA
-70 = -10sqrt(130)cosA
7 = sqrt(130)cosA
cosA = 7/(sqrt(130))
cosA = (7sqrt(130))/130
A = about 52.125°
b^2 = a^2 + c^2 - 2ac(cosB)
sqrt(50)^2 = sqrt(45)^2 + sqrt(65)^2 - 2(sqrt(45)sqrt(65))cosB
50 = 45 + 65 - 2sqrt(2925)cosB
50 = 110 - 2sqrt(225 * 13)cosB
-60 = -30sqrt(13)cosB
2 = sqrt(13)cosB
cosB = 2/sqrt(13)
cosB = (2sqrt(13))/13
B = about 56.3°
ANS : To the nearest Degree
52°, 56°, 72°
if you add the actual values together, you will still get 180.
2006-09-11 20:59:03
·
answer #2
·
answered by Sherman81 6
·
0⤊
0⤋
a million. trust 2. communique (had to operate this because you need to me) 3. appreciate 4. Romance 5. patience 6. Sharing 7. Humor 8. exhilaration 9. Tenderness 10. Compatibility
2016-11-26 02:12:15
·
answer #3
·
answered by akerley 3
·
0⤊
0⤋
Use distance formula with your coordinates and trig functions with the lengths of the sides or law of sines.
2006-09-11 14:09:54
·
answer #4
·
answered by Anonymous
·
0⤊
0⤋
The sides of the triangle are:
AB = sqrt(65)
BC = sqrt(45)
CA = sqrt(50)
From the law of cosines you get that:
AB^2 = BC^2 + CA^2 - 2*BC*CA*cos(ACB)
BC^2 = CA^2 + AB^2 - 2*CA*AB*cos(BAC)
CA^2 = AB^2 + BC^2 - 2*AB*BC*cos(CBA)
then
65 = 45 + 50 - 2*sqrt(45*50)*cos(ACB)
45 = 50 + 65 - 2*sqrt(50*65)*cos(BAC)
50 = 65 + 45 - 2*sqrt(65*45)*cos(CBA)
and
Angle ACB = 71.565 degrees
Angle BAC = 52.125 degrees
Angle CBA = 56.310 degrees
I hope this helps.
2006-09-11 14:15:19
·
answer #5
·
answered by karlterzaghi 2
·
0⤊
0⤋
make a grid and create it...
2006-09-11 14:07:52
·
answer #6
·
answered by Anonymous
·
0⤊
0⤋