English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

I need help with this:

Find the sum
5 + 10 + 15 + ... + 295 + 300

2006-09-11 07:49:21 · 6 answers · asked by Ryan H 2 in Science & Mathematics Mathematics

6 answers

= 5(1 + 2 + ... + 100)
= 5(100*101/2)
= 25250

2006-09-11 07:52:04 · answer #1 · answered by bensonlee5 1 · 0 0

In an algebraic solver it would be the sum from 1 to 60 of 5*n, where n is an integer. To do it by hand, you use the formula

n*(n+1)/2 = the sum of all the integers from 1 to n
then multiply that by 5 (since your sum is all multiples of 5)

this is 5*60*61/2 =

9150

2006-09-11 15:01:33 · answer #2 · answered by bordag 3 · 0 0

sum = 5 (1+2+3+.....60)


1+2+3+......+58+59+60

pair 1 and 60 =61
pair 2 and 59 = 61
pair 3 and 58 = 61


how many pairs of 61......???


from 1 to 60 we have 60 numbers => 30 pairs


so 1+2+3+....+60 = 61*30

the sum is 5*61*30

2006-09-11 14:55:41 · answer #3 · answered by Anonymous · 0 0

5 * (1+2+3+4....+60)

1+2+3+4+....+60 = 60*61/2 = 1830

1830*5 = 9150

2006-09-11 14:53:08 · answer #4 · answered by bob h 3 · 0 0

5(1+2+3+4+.........................................+60)
sum of n natural nos=n(n+1)/2=60*61/2
=1830
so 5+10+15+...............+295+300
=5*1830=9150

2006-09-11 14:53:31 · answer #5 · answered by raj 7 · 0 0

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
=9150

2006-09-11 14:54:13 · answer #6 · answered by Scott S 4 · 0 0

fedest.com, questions and answers