English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

externa parts -- rudder,elevator,aileron,flaps,slats,spoilers,undercarriage,engines,exterior lights...


internal parts --- cockpit,galley, bulkheads, toilet, doors, coatcompartments, emergency lihgts

2006-08-17 05:06:38 · 3 answers · asked by Anonymous in Cars & Transportation Aircraft

3 answers

Rudder: Piece on the tail that helps the aircraft turn during crosswind landings

Elevator: Part that makes the aircraft pitch up or down. It is controlled by the control column of a fly-by-wire joystick.

Aileron: Part on the wings which bend upward while the other side of the wing's ailerons bend downwards. They make the aircraft bank.

Flaps: The flaps that come out of the wing during takeoff or landing. They increase lift by increasing the camber of the wing. Or they increase drag by increasing the wetted area of the wing, so there is more skin friction drag.

Lights: The exterior lights are turned on at different times. There are Nav lights, Taxi lights, Strobe lights, beacons and landing lights. Landing lights are turned off after the aircraft reaches 10,000ft. They are used so other aircraft can see your plane.

Cockpit: Where the pilots fly the aircraft. Most airline cockpits require only 2 pilots but older aircraft require 3.

Galley: The area where flight attendants prepare and heat meals.

Bulkheads: Bulkheads are an upright wall in the middle of an aircraft and increase the strength of the structure, and for the rear bulkhead, it keeps the aircraft airtight. Bulkheads usually offer more legroom for economy class passengers.

Toilet: Well, self-explanitory. Most aircraft now have vaccuum toilets, which was introduced with the 767, but older aircraft still use blue disinfectant flush types which use a gallon of blue disinfectant per flush.

Doors: The doors on an aircraft. Emergency exits have increased legroom for passengers.

Coat Compartments: A compartment where the flight attendant can hang the passenger's coats.

Emergency lights: Emergency pathlighting lining the aisles will light up in the event of an emergency and let passengers know of an emergency.

2006-08-17 15:16:18 · answer #1 · answered by Jobfinder 2 · 0 0

Ailerons can be used to generate a rolling motion for an aircraft. Ailerons are small hinged sections on the outboard portion of a wing. Ailerons usually work in opposition: as the right aileron is deflected upward, the left is deflected downward, and vice versa. This slide shows what happens when the pilot deflects the right aileron upwards and the left aileron downwards.

The ailerons are used to bank the aircraft; to cause one wing tip to move up and the other wing tip to move down. The banking creates an unbalanced side force component of the large wing lift force which causes the aircraft's flight path to curve. (Airplanes turn because of banking created by the ailerons, not because of a rudder input.

The ailerons work by changing the effective shape of the airfoil of the outer portion of the wing. As described on the shape effects slide, changing the angle of deflection at the rear of an airfoil will change the amount of lift generated by the foil. With greater downward deflection, the lift will increase in the upward direction. Notice on this slide that the aileron on the left wing, as viewed from the rear of the aircraft, is deflected down. The aileron on the right wing is deflected up. Therefore, the lift on the left wing is increased, while the lift on the right wing is decreased. For both wings, the lift force (Fr or Fl) of the wing section through the aileron is applied at the aerodynamic center of the section which is some distance (L) from the aircraft center of gravity. This creates a torque

T = F * L

about the center of gravity. If the forces (and distances) are equal there is no net torque on the aircraft. But if the forces are unequal, there is a net torque and the aircraft rotates about its center of gravity. For the conditions shown in the figure, the resulting motion will roll the aircraft to the right (clockwise) as viewed from the rear. If the pilot reverses the aileron deflections (right aileron down, left aileron up) the aircraft will roll in the opposite direction. We have chosen to name the left wing and right wing based on a view from the back of the aircraft towards the nose, because that is the direction in which the pilot is looking.

Let's investigate how the ailerons work by using a Java simulator.


You can change the aileron setting by using the slider at the bottom.

You can download your own copy of this simulator for use off line. The program is provided as Roll.zip. You must save this file on your hard drive and "Extract" the necessary files from Roll.zip. Click on "Rollview.html" to launch your browser and load the program.



[You can also test the roll effect yourself using a paper airplane. Just cut some control tabs into the rear of both wings. Bend one tab up and the other down, and you will see the airplane roll when it is flown. The roll will be in the direction of the tab that is pulled up. The same thing will work on a simple wooden glider. The tabs can be yellow stick-ums or tape attached to the wings.]

When you travel on an airliner, watch the wings during turns. The pilot rolls the aircraft in the direction of the turn. You will probably be surprised at how little deflection is necessary to bank (roll) a large airliner. But be warned that there is a possible source of confusion on some airliners. We have been talking here about rolling the aircraft by using a pair of ailerons at the very trailing edge of both wings to increase or decrease the lift of each wing. On some airliners, the aircraft is rolled by killing the lift on only one wing at a time. A plate, called a spoiler, is raised between the leading and trailing edges of the wing. This effectively changes the shape of the airfoil, disrupts the flow over the wing, and causes a section of the wing to decrease its lift. This produces an unbalanced force with the other wing, which causes the roll. Airliners use spoilers because spoilers can react more quickly than ailerons and require less force to activate, but they always decrease the total amount of lift for the aircraft. It's an interesting trade! You can tell whether an airliner is using spoilers or ailerons by noticing where the moving part is located. At the trailing edge, it's an aileron; between the leading and trailing edges, it's a spoiler. (Now you can dazzle the person sitting next to you on the plane!)

2006-08-17 14:38:27 · answer #2 · answered by sushant m 2 · 0 0

Rudder controlls the side to side motion of the plane, controlled via foot pedals in the cockpit

elevator controls the up and down (altitude of the plane) controled by the steering column in the cockpit

Aileron controlls the bank of the plane, also controlled by the steering column in the cockpit

flaps increase the surface area of the wing producing drag, therefore slowing the plane down for landing. also help to create more lift to help get the plane up off the ground

lights are so other pilots can see your plane, especially in fog or other conditions

internal parts, cockpit is where the pilots sit to control the plane, galley is another word for kitchen, its where the flight attendents store food/drink for flight. and others, someone else will have to answer

2006-08-17 12:17:26 · answer #3 · answered by mcdonaldcj 6 · 1 0

fedest.com, questions and answers