In computer science, a data structure is a way of storing data in a computer so that it can be used efficiently. Often a carefully chosen data structure will allow a more efficient algorithm to be used. The choice of the data structure often begins from the choice of an abstract data structure. A well-designed data structure allows a variety of critical operations to be performed, using as few resources, both execution time and memory space, as possible. Data structures are implemented using the data types, references and operations on them provided by a programming language.
Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to certain tasks. For example, B-trees are particularly well-suited for implementation of databases, while routing tables rely on networks of machines to function.
In the design of many types of programs, the choice of data structures is a primary design consideration, as experience in building large systems has shown that the difficulty of implementation and the quality and performance of the final result depends heavily on choosing the best data structure. After the data structures are chosen, the algorithms to be used often become relatively obvious. Sometimes things work in the opposite direction - data structures are chosen because certain key tasks have algorithms that work best with particular data structures. In either case, the choice of appropriate data structures is crucial.
This insight has given rise to many formalised design methods and programming languages in which data structures, rather than algorithms, are the key organising factor. Most languages feature some sort of module system, allowing data structures to be safely reused in different applications by hiding their verified implementation details behind controlled interfaces. Object-oriented programming languages such as C++ and Java in particular use classes for this purpose.
Since data structures are so crucial to professional programs, many of them enjoy extensive support in standard libraries of modern programming languages and environments, such as C++'s Standard Template Library, the Java API, and the Microsoft .NET Framework.
The fundamental building blocks of most data structures are arrays, records, discriminated unions, and references. For example, the nullable reference, a reference which can be null, is a combination of references and discriminated unions, and the simplest linked data structure, the linked list, is built from records and nullable references.
There is some debate about whether data structures represent implementations or interfaces. How they are seen may be a matter of perspective. A data structure can be viewed as an interface between two functions or as an implementation of methods to access storage that is organized according to the associated data type.
http://en.wikipedia.org/wiki/Data_structure
2006-08-17 00:34:16
·
answer #1
·
answered by ammassridhar 3
·
0⤊
0⤋
using appropriate data models will make your project in use all the time
2006-08-17 02:16:36
·
answer #2
·
answered by Aarthi R 2
·
0⤊
0⤋
Sorry, need some details here. E-mail me at diogenese19348@yahoo.com if you seriously need an answer. I am not going to keep checking back on the question.
-Dio
2006-08-17 00:26:20
·
answer #3
·
answered by diogenese19348 6
·
0⤊
0⤋
Stack, Linked List, Queue, Binary Tree (and 2 points. thanks)
2006-08-17 01:30:55
·
answer #5
·
answered by Indian_Male 4
·
0⤊
0⤋