can someone pls answer this for me using method of variation of parameter? (D^2 - 1) = 2e^(-x) (1+e^(-2x))^(-2) ; where D is the differential operator d/dx
2006-07-15
18:25:50
·
3 answers
·
asked by
Anonymous
in
Science & Mathematics
➔ Engineering
(D^2 - 1) = 2e^(-x) (1+e^(-2x))^(-2)
(m^2 -1) = 0
therefore, m1=1, m2= -1.
therefore, Ae^x + Be^(-x) = yc
therefore, A(x)e^x + B(x)e^(-x) = yp
yp' = A'(x)e^x + A(x)e^x + B'(x)e^(-x) - B(x)e^(-x)
let: A'(x)e^x + B'(x)e^(-x) =0; eq1
yp' = A(x)e^x - B(x)e^(-x)
yp'' = A'(x)e^x + A(x)e^x - B'(x)e^(-x) + B(x)e^(-x)
(D^2 - 1)yp=2e^...
A'(x)e^x - B'(x)e^(-x) = 2e^(-x) (1+e^(-2x))^(-2) ; eq2
solve simultaneously eq1&eq2:
A'(x)e^x = e^(-x) (1+e^(-2x))^(-2)
B'(x)e^(-x) = -e^(-x) (1+e^(-2x))^(-2)
therefore,
A'(x)= e^(-2x) (1+e^(-2x))^(-2)
B'(x)= -(1+e^(-2x))^(-2)
by integrating:
A = 0.5(1+e^(-2x))^(-1)
B = then this i can't integrate.
the answer btw is y = yc -xe^(-x) -0.5e^(-x) ln(1 + e^(-2x))
2006-07-15
19:01:48 ·
update #1