tanxcosx + cotxsinx
= (sinx/cosx)cosx + (cosx/sinx)sinx
= sinx + cosx
.,.,.,.,
2007-12-26 23:10:12
·
answer #1
·
answered by The Wolf 6
·
2⤊
3⤋
Dear Mr. mk:
Using the trigonometric identities we discover that of the
following:
tan x cos x + cot x sin x = ( sin x / cos x ) * ( cos x ) +
( cos x/ sin x ) * ( sin x )
tan x cos x + cot x sin x = sin x + cos x
Sincerely:
willard_thomas_jr@yahoo.com
(a.k.a. - calvaliear )
2007-12-29 14:10:46
·
answer #2
·
answered by calvaliear 5
·
0⤊
1⤋
Prove that: sin x + cos x = tan xcosx + cotxsinx
sin x + cos x = (sin x/cos x)(cos x) + (cos x/sin x)(sin x)
sin x + cos x = sinx + cosx ANS
teddy boy
2007-12-27 08:55:38
·
answer #3
·
answered by teddy boy 6
·
0⤊
3⤋
we know that tanx = sinx/ cosx and cot x = cos x/ sin x
hence if we take RHS
tan x cos x + cot x sin x
= (sin x / cos x) cos x + (cos x / sin x) sin x
= sin x + cos x
= LHS
2007-12-27 07:57:15
·
answer #4
·
answered by KJ_Jockey 2
·
0⤊
3⤋
= tan xcos x + cot xsin x
= (sinx/cosx)cosx + (cosx/sinx)sinx defn of tanx and cot x
= sinx + cosx cross cancel
2007-12-27 07:07:20
·
answer #5
·
answered by saejin 4
·
0⤊
3⤋
well since tan =sin/cos we have sin =tancos and cot=1/tan
tancos+tancos/tan=tancos+cos =sincos/cos+cos= sin +cos
2007-12-27 06:53:06
·
answer #6
·
answered by Happy-Miserable-Female 3
·
0⤊
3⤋
tan x cos x + cot x sin x
= (sin x / cos x) cos x + (cos x / sin x) sin x
= (sin x cos x) / cos x + (cos x sin x) / sin x
= sin x + cos x
2007-12-27 07:05:09
·
answer #7
·
answered by Raichu 6
·
2⤊
2⤋
RHS
(sin x / cos x) cos x + (cos x / sin x) sin x
sin x + cos x
LHS
sin x + cos x
LHS = RHS
2007-12-27 08:10:19
·
answer #8
·
answered by Como 7
·
2⤊
3⤋