English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

The determinant of the matrix

1-c^2 , 2-c
1+c ,1

(a) 1 – c
(b) –1– c
(c) c – 1
(d) c + 1

2007-12-22 02:24:04 · 6 answers · asked by ABD A 1 in Science & Mathematics Mathematics

6 answers

To determine the determinant of a 2x2 matrix, use the following definition:

If A = [a,b|c,d] then det[A] = ad - bc

Therefore for the matrix C:
C = [1-c^2,2-c|1+c,1]

The determinant will be:
det[C] = (1-c^2)(1) - (2-c)(1+c)
det[C] = 1 - c^2 - (2 + c - c^2)
det[C] = -1 - c

The correct answer is (b)

2007-12-28 22:43:21 · answer #1 · answered by Valithor 4 · 0 0

Value of the Determinant = (1 - c²)(1) - (2 - c)(1 + c)

= 1 - c² + c² - c - 2 = - 1 - c. So (b) is the right answer!

2007-12-22 02:34:07 · answer #2 · answered by quidwai 4 · 0 0

1-c^2 2-c
= 1-c^2 - (2-c)(1+c)
1+c 1
= 1-c^2-2-2c+c+c^2
= 1-2-c
= -1-c
The answer is (b).

2007-12-22 02:44:40 · answer #3 · answered by bach 2 · 0 0

|..1 - c²....2 - c..|
|..1+ c........1....| = 1 - c² - (2-c)(1+c) = 1 - c² - 2 - 2c + c + c² =
= -1 - c

So the correct answer is (b)

2007-12-22 02:31:45 · answer #4 · answered by Orfeas 3 · 0 0

|..(1-c^2)... 2-c..|
|....1+c.......1...|

d = (1-c^2)(1) - (1+c)(2-c)
d = (1 - c^2) - (2 + c - c^2)
d = 1 - c^2 - 2 - c + c^2
d = -1 -c

ans. [ b ]

2007-12-22 02:27:22 · answer #5 · answered by RYAN 3 · 0 1

| 1 - c²___2 - c |
| 1 + c______1|

(1 - c²) - (1 + c)(2 - c)
1 - c² - (2 + c - c²)
- 1 - c
ANSWER b)

2007-12-29 19:45:26 · answer #6 · answered by Como 7 · 0 0

fedest.com, questions and answers