English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-12-20 13:04:14 · 4 answers · asked by lildude3216 2 in Science & Mathematics Mathematics

4 answers

I = ∫ 96 - 20 sin (x/4) dx
Let u = x/4
du = (1/4) dx
dx = 4 du
I = 96 x - 80 ∫ sin u du
I = 96 x + 80 cos u + C
I = 96 x + 80 cos (x / 4) + C

2007-12-24 07:55:25 · answer #1 · answered by Como 7 · 1 0

∫96-20sin(x/4)
∫96-20∫sin(x/4)
let u = x/4; du = 1/4 dx; 4 du = dx
∫96-80∫sin(u) du

96x+80cos(x/4)+c

2007-12-20 21:08:29 · answer #2 · answered by J D 5 · 1 0

Use a u substitution would be easier.

f(x)=96-20sin(x/4)
F(x)=[integral]96dx - 20[integral]sin(x/4)dx

u=x/4
du=dx/4
dx=du*4

F(x)=96x - 20*[integral]sin(u)du*4
F(x)=96x - 20*4*(-cos(u))
F(x)=96x + 80 cos (x/4) + C

2007-12-20 21:10:06 · answer #3 · answered by Chaosgnaw 1 · 1 0

No need for substitution method. Just integrate the sums and the answer will still be the same. 96x+80cos(x/4)+C.

2007-12-20 21:19:06 · answer #4 · answered by Darkskinnyboy 6 · 0 0

fedest.com, questions and answers