English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

(Even though women think a 180 degrees differently).

Agree??

2007-12-17 06:42:57 · 53 answers · asked by Anonymous in Family & Relationships Marriage & Divorce

My father is stilled married..he cheated, most men do. :)

2007-12-17 06:53:34 · update #1

Happygolucky...email me for response

2007-12-17 09:34:48 · update #2

53 answers

Scientifically speaking I disagree. I think women, if socially acceptable aren't wired to have ONE mate either. Personally for me and my fiance we are.

This Quote
"As primal beings, men are not supposed to be monogamous. When people ask, 'Do you believe in monogamy?' Well, of course that's what you want. But part of what I love about men is that it's hard for them to be monogamous. Women, I think, need to spend more time understanding men than changing men. And vice versa."

- Kate Hudson

Reminded me of this article Fom Science and Spirit
The Tie that Bonds: The Molecular Basis of Monogamy

Explorations into the biological foundations of behavior are throwing new light on the way we organize our societies, and ourselves. Neuroscientists Insel and Young outline new clinical studies and examine their implications for human monogamy.

by Thomas R. Insel and Larry J. Young

Explorations into the biological foundations of behavior are throwing new light on the way we organize our societies, and ourselves. Drawing on groundbreaking studies of the brain activity behind monogamous and non-monogamous behavior of animals, neuroscientists Insel and Young examine the implications for human monogamy.

The 1990s witnessed a revolution in our understanding of how the brain mediates sensory processing, motor function, and memory. We have learned the importance of a small family of developmental genes for specifying normal neural development. At the same time, we have discovered the remarkable plasticity of both the developing brain and the adult brain. Sadly, this revolution in neuroscience has taught us less about the neurobiology of emotion and has revealed very little about the neural basis of love.

Although neuroscientists recognize the importance of love as a complex emotion, few have wanted to address the challenge of studying where or how the brain mediates love. The problem is not simply that love is complex. There is an abundant literature on the neurobiology of aggression, which is equally complex. Many have studied the neural consequences of loss or separation, which may be considered equally complicated and perhaps the inverse of love or attachment. The problem is not that love (or attachment) is a positive state and less likely to be studied than emotions, such as loss, which can be tied to a disorder. We have nearly 50 years of research on the neuroendocrinology of sex, which is also a healthy, positive behavior.

The relative absence of neuroscience research on love can be attributed to two fairly obvious and related limitations. One is definitional. Love, whether defined as attachment or a pair bond, is difficult to measure. Although most of us may recognize love as the most powerful psychological and biological experience of our lives, how do we quantify this experience? And how do we distinguish love from infatuation, craving, caring? A related problem for neuroscientists is that nothing remotely related to human love is observed in common laboratory animals, such as rats and mice. Yes, rat mothers will show intense devotion and defense of their young, but they are not selective in their maternal behavior, offering the same level of care to unrelated young placed in the nest.

In the past few years, a series of studies have begun to address both of these limitations. By studying natural populations of monogamous rodents, we and others have investigated the brain-based correlates of pair-bonding behaviors that resemble what we call "love" between humans. In non-human, monogamous species, pair-bonding involves a life-long selective attachment to one partner.

One caveat: It should be noted that the term "monogamy," as used by biologists, refers to a pattern of social not sexual organization. About 3 percent of mammals are considered monogamous. Bonded pairs in these species share a territory and a nest, exhibit both maternal and paternal care, and usually are similar in size and appearance. But few if any of these species exhibit sexual exclusivity. That is, biological monogamy refers to how you live not how you mate.

Vole Models

The availability of species that pair bond raises an option for addressing the second limitation of studying the neurobiology of love. While we cannot directly ask rodents how they feel, we can measure the behaviors essential for pair bonding. In monogamous rodents, the formation of a preference for a specific partner, the time spent in physical contact, and the response to separation can be easily quantified and standardized. Using these sorts of measures, we can begin to ask which genes, neurotransmitters, and neural systems are critical for pair bonding.

Monogamous mammals are found in many different species and in diverse environments. For example, among primates, gibbons, titi monkeys, and marmosets have been described as monogamous. But for neurobiological study, rodents are ideal and a group of microtine rodents or voles has proven especially informative. Prairie voles are highly social and show long-term pair bonds. Indeed, in field studies, prairie voles are usually found in communal burrows with a single breeding pair. If the male or female breeder dies, the remaining prairie vole will not accept a new mate, in 80 percent of such cases. Female prairie voles have an unusual pattern of reproductive development. They remain sexually immature while remaining in their birth group. Once exposed to an unrelated male, they ovulate for the first time, mate for 24-48 hours, and, apparently as a result of mating, develop a pair bond. Laboratory studies have demonstrated the importance of mating for the development of a partner preference.

Part of what makes prairie voles so informative for study is the availability of closely related species that differ so markedly in their social behavior. For instance, the montane voles, a near-relative to the prairie vole, is a non-monogamous species, living in isolated burrows, and showing no evidence of paternal behavior. Montane voles do not pair bond in the field and in laboratory studies they fail to develop partner preferences after mating.

Crucial Hormones

Given the striking behavioral differences between these voles species, researchers have been attempting to define associated differences in brain anatomy or chemistry. Among the candidates for separating these two species are two neuropeptide hormones, oxytocin (OT) and vasopressin (AVP). These hormones are synthesized in the brain and have been previously shown to have important effects on social behavior in common laboratory animals, such as rats, mice, and even sheep. In mammals, OT has been shown to be important for labor and lactation. In rats and sheep, OT working within specific neural circuits is critical for the onset of maternal behavior. This is perhaps the best example in the behavioral neuroscience literature of a single neuropeptide influencing attachment behavior in non-monogamous mammals. In addition, OT is released during copulation and may influence female sexual behavior. AVP has been implicated in several aspects of male social behavior, including territorial displays, aggression, and social memory.

Given the evidence linking OT and AVP to complex social behaviors, it is perhaps not surprising that these hormones should also influence pair bond formation in the monogamous prairie vole. But there is an even better reason for investigating these two neuropeptides in pair bond formation. As noted above, in the normal life cycle of a prairie vole, mating is the critical event preceding pair bonding. Both OT and AVP are released with mating in other mammals and presumably these hormones are released in the vole brain during copulation.

Test show that in female prairie voles, if OT is given during exposure to a male, a partner preference can be induced without mating. Conversely, females allowed to mate, but treated with an antagonist or specific blocker of OT, fail to form a partner preference. Thus, OT appears necessary and sufficient for partner preference formation in the female prairie vole.

Surprisingly, OT is without effects in the male. For males, AVP seems to be the decisive element. An introduction of AVP in the absence of mating is effective in causing a pair-bond preference even in the absence of mating, while an AVP antagonist blocks partner preference formation if given during mating. In addition, AVP facilitates — and an AVP antagonist blocks — paternal behavior.

However, neither OT or AVP, given in an identical fashion, influence social behavior in the non-monogamous montale vole. Although these hormones can increase self-grooming or locomotor behavior, neither will induce a partner preference or paternal care in montane voles. The reason that these peptides have different effects appears to be due to species differences in the brain targets for both OT and AVP.

Different Targets

All neurohormones act via specific receptors. After release from nerve endings, the hormone binds to receptors that initiate a series of intracellular events. It is important to understand that where the receptors are located in the brain determines which cells are activated. In other words, the behavioral effects of any hormone are defined not just by the amount of hormone, but also by where its receptors are located in the brain. Both prairie voles and montane voles make OT and AVP, but these species have markedly different patterns of receptor distribution.

For example, OT receptors in the prairie vole brain are concentrated in "reward" pathways in the brain, target regions that are likely to lead to the conditioning of certain behaviors (such as a partner preference) after these targets are "activated" by a release of OT during copulation. In the montane vole, OT receptors are absent in these regions but are found in regions important for non-social behavior, and therefore, OT release with copulation would not be expected to induce a partner preference. Vole species do not differ in the brain distribution of several other hormone receptors that have been studied, suggesting that is the differences in the OT and AVP receptors that are crucial in the different social organization between the species.

It's also important to emphasize that the difference between prairie voles and montane voles is not too much or too little OT (or AVP). The species have roughly equivalent amounts of both neurohormones. The difference is where the receptors are. Therefore, infusing micromolar quantities of either hormone into montane voles will not induce a pair bond. The receptors are in the wrong target areas of the montane vole brain for either hormone to influence social attachment. In a recent study, we developed a transgenic mouse with AVP receptors in the pattern normally found in the prairie vole brain. As a result, this mouse responded to AVP with an increase in social interaction, such as investigation and grooming of an unfamiliar mouse. Although these mice were not monogamous, these results demonstrated the importance of receptor localization for determining how hormones can influence complex social behavior.

Evolution and Monogamy

A central question is why such closely related species should exhibit these striking differences in chemical neuroanatomy. The answer may reside in the molecular structure of their OT and AVP receptor genes. Genes can be conceptualized as two main components: First, a coding sequence that provides the DNA information for the formation of one specific RNA which, in turn, directs the formation of one unique protein. The coding sequence determines if a gene will create a hormone, a receptor, or a structural piece of the cell. A second part of the gene is the promoter sequence. This area, which flanks the coding sequence, contains numerous response elements that provide the stop or go signals for the gene. If the coding sequence provides the information to make a given protein, the promoter provides the information of where and when this protein gets made.

There are few genomic differences between prairie and montane voles. When comparing the coding sequences for OT and AVP receptors, these species appear essentially identical. That is, there are no structural differences in their OT and AVP receptors. Not surprisingly, given that these receptors are found in different brain regions, there are differences in their promoter sequences. For OT receptors, prairie and montane voles show only subtle differences, but these differences appear to be substantial enough to direct different patterns of expression in the brain. For AVP receptors, the species differences are more extreme, with prairie voles showing a large segment of DNA inserted into their promoter regions — an insert lacking in montane voles.

Thus, if monogamy in prairie voles is associated with a DNA insertion in the AVP receptor gene, where does this insert come from? We don't know the origin of these sequences, but similar regions have been reported in other receptor genes, leading to surprising differences in function. In the OT and AVP receptor genes, these inserted sequences include repeating patterns that are variable from one species to the next. It seems likely that as a result of these changing sequences in the promoters, OT and AVP receptors show marked species variation in their pattern of brain expression.

The existing data are consistent with the hypothesis that the promoter sequences for these two genes are "hot spots" for insertional events leading to different patterns of receptor expression, different functional effects of the hormones, and ultimately different patterns of social organization. Monogamy may have resulted from mutations in these "hot spots" and then survived under specific socio-ecological conditions in which pair bonding and paternal behavior were adaptive.

Of Human Bonding

We know very little about the neurobiology of human attachment. Humans have OT and AVP, and both hormones are released during copulation. Perhaps of greater importance, receptors for OT and AVP are found in the human brain, although the patterns are not quite like either the prairie vole or the montane vole. We do not know if OT or AVP is involved in the formation of pair bonds in humans. More specifically, we do not know if the differences found between species will be mirrored by differences within a species.

Obviously, there is still much work to be done; it's been said that the purpose of experimental models is to focus our questions, not to provide final answers. But the use of non-human models to study attachment has provided a clear focus for beginning investigations into human attachment. Oxytocin and vasopressin are important candidate neural systems and their receptor fields provide potential nodes for processing the information necessary for attachment. We know that these receptor systems have substantial inter-species differences in regional expression ,based on variable regions in their genes. It seems possible, although still unproven, that these same regions will show intra-species variability and may correlate with individual differences in the capacity for human attachment.



THE CENTER FOR BEHAVIORAL NEUROSCIENCE,

Thomas R. Insel is Director of the Center for Behavioral Neuroscience, professor of psychiatry at Emory University School of Medicine, and adjunct professor of psychology at Emory's College of Arts and Sciences. Larry J. Young is assistant professor of psychiatry at Emory University and faculty member of the Center for Behavioral Neuroscience.

Further Reading

Ferris C. (1992). Role of vasopressin in aggressive and dominant/subordinate behaviors. In C. Pedersen, J. Caldwell, G. Jirikowski, & T. Insel (Eds.), Oxytocin in Maternal, Sexual, and Social Behaviors, (Vol. 652, pp. 212-227). New York: New Pork Academy of Sciences Press.

Insel TR, and Hulihan TJ (1995): A gender-specific mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles. Behavioral Neuroscience 109: 782-789.

Insel TR, Wang Z, and Ferris CF (1994): Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. Journal of Neuroscience. 14: 5381-5392..

Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C, and Levin H (1998): Plasma oxytocin levels in autistic children. Biological Psychiatry 432: 270-277.

Shapiro L, Austin D, Ward S, and Dewsbury D (1986): Familiarity and female mate choice in two species of voles (Microtus ochrogaster and microtus montanus). Animal Behavior 34: 90-97.

Winslow JT, Hastings N, Carter CS, Harbaugh CR, and Insel TR (1993a): A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365: 545-548.

Winslow JT, Shapiro LE, Carter CS, and Insel TR (1993b): Oxytocin and complex social behaviors: species comparisons. Psychopharmacology. Bulletin. 29: 409-414.

Young LJ, Winslow JT, Wang Z, Gingrich B, Guo Q, Matzuk MM, and Insel TR (1997): Gene targeting approaches to neuroendocrinology: Oxytocin, maternal behavior, and affiliation. Hormones and Behavior 31: 221-231.

Young, L.J. (1999): Oxytocin and Vasopressin Receptors and Species-Typical Social Behaviors. Hormones and Behavior 36: 212-221.


My take:
I find it interesting that we are so quick to label men naturally polygamous and women naturally monogamous. There are very few matriarchal societies but in these certain tribes the women have MORE than one husband, in fact it is the exact reverse of what we are used to hearing/seeing. I feel like science, which has always been more male dominated, tends to give out these male "excuses" if you will. It's not until recently that science has started to do more localized research on women and how medication will affect them differently. These findings can be demonstrated by the differences between male heart attacks and female.

According to the Mayo Clinic "Significant differences exist between men and women in the clinical presentation of heart attack and in the response to treatment. Women having a heart attack are likely to be older and have a higher incidence of high blood pressure, diabetes, high cholesterol, and congestive heart failure than do men. They are less likely to be smokers. The symptoms of acute heart attack are slightly different in women. Women are more likely to have neck and shoulder pain, abdominal pain, nausea, vomiting, fatigue, and shortness of breath in addition to chest pain. Silent heart attacks are more common in women. Often, because of these atypical symptoms, women seek medical care later than do men.

Even after arrival at the hospital, women may encounter delay in establishing the diagnosis of heart attack. Women are somewhat less likely than men to have the typical EKG findings to diagnose acute heart attack. Women with heart attack are generally more ill than are men. Despite this, women are paradoxically less likely to receive aggressive clot-busting treatments (thrombolytic therapy described below) and are more likely to receive it later than do men. Women are also less likely to be admitted to a coronary care unit."

Women have been ignored and treated like "little men." The research was done on males because, I'm sorry, they are "more important." If you look at the HPV vaccine, people are outraged saying it will make women promiscuous yet all the money and research and AVAILABILITY of Viagra is okay. One can help prevent cervical cancer while the other gets a man horny. Which one do we feel threatens the purity of our society? Exactly.

I feel that IF in fact monogamy is societal it depends on the person's upbringing as well as the social standards. In our society women have to remain Virginal and stay with one man. Historically once widowed a woman in OUR society (and I am STRESSING this) did not remarry. If a woman is a polygamist then she is automatically a slut, whore and ***** while if a man is "it's not his fault, it's biological."

Personally I feel that people are chronically monogamous in that they crave and need one partner and once the partner leaves(dies) they need another partner. I find it interesting that people do not take into account that men's lifespan lengthens once they are in a monogamous relationship while the Female's lifespan shortens.

Science still cannot explain love/sex in humans and much less the bonds people form so why do people mimic the words of Kate Hudson? Why does everyone think women are sexless, monogamous, virginal people while men are allowed and even "biologically predisposed" to be more promiscuous-- and that's ok?


Not to burst any man's bubble out there, nor any woman who has been cheated on but women have the same sex drive as men except we have a PEAK later then men. Men experience this peak in their 20's while women in their late 30's and 40's...Furthermore, women are just as capable of polygamy if their society accepts it as men are.



Please tell me what you think.

2007-12-17 07:41:59 · answer #1 · answered by happygolucky 6 · 2 1

Men are not wired any kind of way, and neither are women. Many men simply cannot stay in a relationship with only 1 person. Many women are this way too. Then again there's the people out there (both men and women) who can easily fit into a one on one relationship from a starting point in their lives until the very end. Also, there are the people who can change from being one type to the other, possibly to their own surprise.

And since you are directing this to women, the women who seem to want more than anything to have a man stay with them and remain faithful, I have something else to say. Some (not all) of these women are hypocrites and liars. They may claim to want this of a man, but as soon as they reach the level of satisfaction they need to know for a fact that there is no way he could or would cheat on them, that is when they lose interest. They have won the game and become bored. They lose respect for him and grow to resent him (sometimes because of their own insecurities, thinking they [the women themselves] do not deserve such faithful commitment from anyone). Regardless of their reasons, they lose interest once assurance has been provided. They then cheat, leave, or do both. Why then would a man go out of his way to prove beyond the shadow of a doubt that he will never cheat? His reward might be more of a punishment. I say, be honest, be fair, be respectful, don't be sneaky, and at the same time don't try so hard to prove yourself. Your integrity will shine by you just being yourself.

2007-12-17 06:59:31 · answer #2 · answered by Anonymous · 0 1

Think it through, Buddy, if you can overcome your "wiring" in order to do so. You believe you want to be with more than one woman. I assume you mean you are seeking consecutive relationships rather than simultaneous ones. I assume too that you are proposing yourself fit for multiple sexual relationships. What do you bring to such relationships when you know you have no intention of maintaining them? When is it the correct time to depart from each? At any point will you have children or take a place in another person's family? Are you intending to have a home in which you usher a number of women and are they allowed to share your residence or just provide you with sexual favors? What about when you run out of willing partners, shall you just keep that last one as in a game of musical chairs? Men of integrity and strength are those who can make choices and promises and be depended upon to honor both.

2007-12-17 07:03:59 · answer #3 · answered by valyncollin 1 · 0 0

Then they should stay single, if they feel they are wired that way and don't want to or cannot keep a vow.

There's just something hypocritically obnoxious about a man who wants to be free to "be with" countless women while still having someone at home to do his cooking and cleaning...and of course, that one he can sleep with that he hasn't had to share with whoever else.

They used to tell girls to avoid promiscuity with the old "cow" adage...Why should a guy buy a cow when he can get the milk for free." I like the new take on that one..."Why should you put up with the whole pig for just a little sausage?" Is it fair to say then, that girls are now "wired" to have more than one, or is it a product of changes in society?

You rarely find a polygamous society where women want more than one husband...Proof of your point? Perhaps...either that or women just know better.

2007-12-17 06:52:18 · answer #4 · answered by cnsdubie 6 · 0 1

I do not agree, but I can see how many people think that.

I think it is no coincidence that you feel this way and that your old man cheated.

When our parents do something, even if they say it was wrong, and they advise against it, their actions provide a moral justification to repeat the action. -whether we are aware of it or not.

My dad has been with my mom forever, and has never cheated, and has stood by her through thick and thin. He's stood by her even while she was hospitalized for months due a serious illness.

It's true when they say, the apple doesn't fall far from the tree.

With the exception of Jessica Alba, I can not imagine anything that would ever convince me to cheat on, or leave my wife.

2007-12-17 07:07:39 · answer #5 · answered by blujello 5 · 1 0

That whole alpha male crap is nothing but composite BS perputrated by the scientific community who is out of touch with f*cking reality. That stuff doesn't go down in real life. Men aren't f-ing animals looking for the next f×ck. Were human being with hearts and emotions just like women. We cry just like women. We are sensitive just like women. I'm tired of these damn cave man stereotypes trying to say who we are when we are nothing like that!!

2016-05-24 09:17:43 · answer #6 · answered by ? 3 · 0 0

That is complete garbage!!! It simply is not even remotely true.

Cheaters, whether male or female, cheat for one of two reasons. Either they do not respect their partners or they are running away from marital issues.

There are far too many loyal and faithful husbands to suggest that men are not wired to be with one woman. In fact, it was men who wanted marriage to one wife in the first place. Even the Bible says that Jesus did not support marriage. He wanted men and women to focus on God rather than each other. He said that if you must get married than you must live up to your vows.

Take care,
Troy

2007-12-17 07:06:13 · answer #7 · answered by tiuliucci 6 · 2 0

Monogamy of either sex isn't a natural thing.....Being monogamous is a choice that we make, but if we weren't married, we would be with someone else, or if the relationship ends, we find someone else. If females were only meant to be with one man their whole lives, and men with many, then even when the man was gone we would wait for him. Not look for another "mate", and the men would have a harem of women.

2007-12-17 06:56:28 · answer #8 · answered by ? 6 · 0 0

Apparently, men are not wired to use correct spelling or grammar, either.

If you're using purely a basic, survival-of-the-fittest, genetic argument, then yes, perhaps it was not in man's best interest to mate with only one female.
But we aren't cavemen anymore. We've evolved, and are capable of greater feelings and actions than just a basic survival/reproduction urge. There are other, and stronger, motivating factors in human life than just sex and food.

2007-12-17 06:49:01 · answer #9 · answered by teresathegreat 7 · 3 0

Some are, some aren't. If I find someone to love that's different than just for sex. I could love 1 woman but still have sex with thousands of others for pleasure. That's my deepest gut instinct as a heterosexual male. I don't even feel the slightest guilt at all worrying about my woman's fear of another one taking me away from her.

2007-12-17 06:52:05 · answer #10 · answered by chrisgallo 3 · 0 0

Are you speaking for yourself? You surely can't claim to represent men as a gender. My father was true to my mother for 60 years. Both my brothers have never even thought about cheating on their wives. I have friends who've been married for 30-40-50 years. You may be a sneak, but not every man is!

2007-12-17 06:47:46 · answer #11 · answered by Anonymous · 4 0

fedest.com, questions and answers