English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

If 8^2-x = 4^3x, x=?

2007-12-11 05:32:53 · 3 answers · asked by pinkduck000 2 in Science & Mathematics Mathematics

please show your work or explain it

2007-12-11 05:36:10 · update #1

thankyou =)

2007-12-11 05:45:17 · update #2

3 answers

8^(2 - x) = 4^(3x)
(2 - x) log 8 = 3x log 4
(2 - x) / 3x = log 4 / log 8
(2 - x) / 3x = log 2² / log 2³
(2 - x) / 3x = 2 log 2 / 3 log 2
(2 - x) / 3x = 2/3
6 - 3x = 6x
9x = 6
x = 2/3

2007-12-11 06:08:15 · answer #1 · answered by Como 7 · 3 0

I'm assuming that's 8^(2-x).

Take the log base 2 of both sides. Then you have

log_2(8^2-x) = log_2(4^3x)

2-x(log_2(8))=3xlog_2(4)

3(2-x)=2(3x)

6-3x=6x

x = 2/3

=)

2007-12-11 13:39:00 · answer #2 · answered by Anonymous · 0 0

8=2^3, so 8^(2-x) = 2^3(2-x)
4^3x = 2^6x
3(2-x)=6x
6-3x=6x
6=9x
x = 2/3

2007-12-11 13:38:42 · answer #3 · answered by norman 7 · 0 0

fedest.com, questions and answers