English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-12-10 18:56:21 · 3 answers · asked by johnny b 2 in Science & Mathematics Mathematics

3 answers

Assuming that y = f(x), use the chain rule, and then isolate y' (dy/dx)

sin y + y'x cos y - 2y' sin 2y = -y' sin y
y'x cos y - 2y' sin 2y + y' sin y = - sin y
y' ( x cos y - 2 sin 2y + sin y ) = - sin y
y' = sin y / (2 sin 2y - sin y - x cos y)

2007-12-10 19:02:38 · answer #1 · answered by Dan A 6 · 0 0

To find (dy/dx) of

x sin y+cos 2y= cos y

Let dy/dx be denoted by y' then on Differenting the eqn w.r.t x we get-

1. siny + x (cosy) y' + (- sin 2y).2 y' = ( - siny) y'
=> x (cosy) y' - (2 sin2y) y'+ (siny) .y' + siny = 0
=> y' [ x cosy - 2 sin 2y + sin y ] + sin y = 0
=> y' = - sin y divided by [ x cosy - 2 sin 2y + sin y ] ..... Answer

2007-12-10 19:45:44 · answer #2 · answered by Pramod Kumar 7 · 0 0

1 sin y + cos y (dy/dx) (x) - 2 sin 2y(dy/dx) = (- sin y) (dy/dx)
(dy/dx) (x cos y - 2 sin 2y + sin y) = - sin y
dy/dx = (- sin y) / (x cos y - 2 sin 2y + sin y)

2007-12-11 02:39:15 · answer #3 · answered by Como 7 · 1 0

fedest.com, questions and answers