(x+3)(x+3)(x+3)
(x^2+3x+3x+9)(x+3)
thn multiply (x+3) into the polynomial one at a time
2007-12-07 05:42:17
·
answer #1
·
answered by Anonymous
·
1⤊
1⤋
(a + b)^3 = a^3 + 3 ab (a +b) + b^3
Put a = x and b = 3
x^3 + 3 × x × 3 (x + 3) + 3^3
= x^3 + 9 x^2 + 27 x + 27
2007-12-07 05:46:48
·
answer #2
·
answered by Pranil 7
·
1⤊
0⤋
All the ^3 means is just to take that number and multiply it three times so itll just be like sayin 3^3 is 3x3x3=27 but you dont want to solve it all you want to do is expand it so itll be
(x+3) (x+3) (x+3)
2007-12-07 05:45:27
·
answer #3
·
answered by Anonymous
·
1⤊
0⤋
Binomial theorem says (x+y)^3 =
x^3 + 3(x^2)(y) + 3(x)(y^2) + y^3.
Let y = 3:
x^3 + 3(x^2)(3) + 3(x)(3^2) + 3^3.
x^3 + 9(x^2) + 27x + 27.
2007-12-07 05:42:54
·
answer #4
·
answered by fcas80 7
·
1⤊
0⤋
(x+3) times by 3
3(x+3) =
3x + 9
2007-12-07 05:42:24
·
answer #5
·
answered by Bilbo baggins 2
·
0⤊
0⤋
multiply (x+3)(x+3)(x+3)
(x^2+6x+9) (using foil)
then multiply the polynomial by (x+3)
x^3+6x^2+9x+3x^2+18x+27 (then combine like terms)
x^3+9x^2+27x+27
2007-12-07 05:42:21
·
answer #6
·
answered by Jasmine 4
·
1⤊
0⤋
Just do this:
(x+3)(x+3)
(x+3)=
(x^2+6x+9)
(x+3)=
x^3+6x^2+9x
+3x^2+18x+27=
x^3+9x^2+27x+27
2007-12-07 05:57:17
·
answer #7
·
answered by Anonymous
·
0⤊
0⤋
(x+3)^3 = (x+3)*(x+3)*(x+3)
= (x^2+3x+3x+9)*(x+3)
= (x^2+6x+9)*(x+3)
= x^3+6x^2+9x+3x^2+18x+27
= x^3+9x^2+27x+27
2007-12-07 05:44:54
·
answer #8
·
answered by ReshitMada 2
·
2⤊
0⤋
(x+3)^3
(x+3) (x+3)^2
(x+3) (x+3) (x+3)
x^2+3x+3x+9 (x+3)
x^2+6x+9 (x+3)
(x^3+6x^2+9x)+(3x^2+18x+27)
x^3+9x^2+27x+27
2007-12-07 05:45:07
·
answer #9
·
answered by Tjj9000 3
·
1⤊
0⤋
make 3 columns. 1st column is row 3 of Pascal's triangle. 2nd column is descending powers of x. 3rd column is ascending powers of 3:
1 ... x³ ..... 1
3 ... x² ..... 3
3 ... x ...... 9
1 ... 1 ..... 27
multiply each row together and add terms:
x³ + 9x² + 27x + 27
2007-12-07 05:45:16
·
answer #10
·
answered by Philo 7
·
2⤊
0⤋