Hi,
Possible rational roots are
...(factors of the constant)
+-__________________________
....(factors of the leading coefficient)
P(x) = x^5 + 3x^3 + 2x - 6
.....factors of 6
+/-.---------------- = +/-1,+/-2,+/-3,+/-6
......factors of 1
P(x) = 3x^4 + x^3 + 2x^2 - 2
.....factors of 2.......1.or.2
+/-.----------------.=.----------.=.+/-1,+/-2,+/-1/3,+/-2/3
......factors of 3.......1.or.3
P(x) = 2x^5 + 3x^4 + 2x^2 - 2
.....factors of 2.......1.or.2
+/-.----------------.=.----------.=.+/-1,+/-2,+/-1/2
......factors of 2.......1.or.2
I hope that helps!! :-)
2007-11-30 14:42:44
·
answer #1
·
answered by Pi R Squared 7
·
0⤊
0⤋
Here's the rule for this:
If a/b is a rational zero of P(x) = a_nx^n + ... + a_1x + a_0
a must divide a_0 and b must divide a_n.
Moreover we may take b positive without
loss of generality.
So let's see what we have:
1. P(x) = x^5 + 3x^3 + 2x - 6.
3. Here we may take b = 1. So the possible rational zeros are all the divisors of -6,
namely -6,-3,-2,-1,1,2,3 and 6.
2. P(x) = 3x^4 + x^3 + 2x^2 - 2
Here b is 1 or 3, so the possible rational zeros are
-2, -1, 1, 2, -2/3, -1/3, 1/3, and 2/3.
3.
P(x) = 2x^5 + 3x^4 + 2x^2 - 2
Now b = 1 or 2, so the possible rational zeros are
-1, -2,1, 2, -1/2 and 1/2.
2007-11-30 14:44:32
·
answer #2
·
answered by steiner1745 7
·
0⤊
0⤋
Comparing the highest and lowest co-efficients will give you all the possible rational factors.
1) The only possible rational factors are ±1, ±2, ±3, ±6.
2) The only possible rational factors are ±1, ±2, ±1/3, ±2/3.
3) The only possible rational factors are ±1, ±2, ±1/2.
2007-11-30 14:41:10
·
answer #3
·
answered by Ian 6
·
0⤊
0⤋
you use p's and q's, where p represents factors of the last term and q represents factors of the coefficient of the first term. all the possible roots are p's over q's(all the answers are plus or minus)
1. p's: 1, 2, 3, 6
q's: 1
possible roots: +/- 6, 3, 2, 1
2. p's: 1, 2
q's: 1, 3
possible roots: +/- (2/3), (1/3), 2, 1
3. p's: 1, 2
q's: 1, 2
possible roots: +/- 1, 2, (1/2)
2007-11-30 14:43:05
·
answer #4
·
answered by cathy 1
·
0⤊
0⤋
ok so if u are finding possible values...
(if i remember correctly)
isn't it (P/Q)
The P being all factors of the constant, in the first problem the negative six
and the Q being all factors of the coefficient of the largest power, again in the first problem, the invisible number 1 in front of x^5
so find all possible values (ex. -6,-3,-2,-1,1,2,3,6)
2007-11-30 14:38:33
·
answer #5
·
answered by joohyung k 2
·
0⤊
0⤋
1) zero is at 1
2) (-.8004308, 0) and (.69479505, 0)
3) (-1.723337, 0) and (-.8274684, 0) and (.69605952, 0)
I just used a graphing calculator, I don't know if you need to find this manually, which I am probably guessing you do... get it equal to zero and solve.
2007-11-30 14:38:39
·
answer #6
·
answered by breeder_18 3
·
0⤊
1⤋
So are you supposed to estimate where the zeros occur or something? Graph them and see where they cross the x-axis.
2007-11-30 14:33:44
·
answer #7
·
answered by Corran 3
·
0⤊
1⤋