English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Prove the identity using other trigonometric identities and substitutions. A calculator may not be used as a proof

2007-11-26 15:44:39 · 3 answers · asked by Anonymous in Science & Mathematics Mathematics

3 answers

9 cos ² θ - 24 cosθ sinθ + 16 sin ² θ
16 cos² θ + 24 cosθ sinθ + 9 sin² θ--------ADD

25 cos ² θ + 25 sin ² θ
25 ( cos ² θ + sin ² θ )
25 (as required)

2007-11-27 03:13:58 · answer #1 · answered by Como 7 · 4 1

( 3 cosθ - 4 sinθ )² + ( 4 cosθ + 3 sinθ )² =
= 9 cos²θ - 24 sinθcosθ + 16 sin²θ + 16 cos²θ + 24 sinθcosθ + 9 sin²θ = 9 (cos²θ + sin²θ) + 16 (cos²θ + sin²θ) = 9 + 16 = 25

2007-11-27 00:08:22 · answer #2 · answered by piano 7 · 1 2

let theta=x so i don't have to type "theta" a lot
then
(3cos(x)-4sin(x))^2 + (4cos(x)+3sin(x))^2=25

Step 1: Foil.
9cos^2(x) - 24sin(x)cos(x) + 16sin^2(x) + 16cos^2(x) + 24sin(x)cos(x) + 9sin^2(x) = 25

Step 2: -24sinxcosx and +24sinxcosx cancel out.
9cos^2(x) + 9sin^2(x) + 16sin^2(x) + 16cos^2(x) = 25

Step 3: Factor out constants.
9(cos^2(x) + sin^2(x)) + 16(sin^2(x) + cos^2(x)) = 25

Step 4: sin^2(x) + cos^2(x) = 1 by trig identity.
9 + 16 = 25

Step 5: Add 9 and 16
25=25

Verified!

2007-11-26 23:58:22 · answer #3 · answered by dugaru327 1 · 1 2

fedest.com, questions and answers