English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2 answers

so you want 1.1999999 (9 repeating) into a fraction?

let A = 1.1999999
10A = 11.99999, subtract
9 A = 10.8 or
90 A = 108 so
A = 108/90 or
A = 54/45
A = 6/5.

Note that if the repeating block is 999 ... it is actually a terminating decimal!

Same thing with A = 0.0666
10A = 0.666, subtract
9 A = .6 or
90 A = 6 or
A = 6/90 or
A = 2/30 or 1/15.

2007-11-20 16:20:30 · answer #1 · answered by Anonymous · 0 0

n = 1.19999999999999999....
10n = 11.99999999999999...
subtracting,
9n = 10.8
n = 108/90 = 12/10 = 6/5

n = 0.06666666666666666....
100n = 6.66666666666666....
99n = 6.6
n = 66/990 = 22/330 = 11/165

2007-11-20 16:25:12 · answer #2 · answered by Philo 7 · 0 0

fedest.com, questions and answers