English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Find the limit of 1-cos(3x/2)/(1+x-e^x) as x goes to 0, by using Maclaurin series for 1-cos(3x/2) and 1+x-e^x

2007-11-15 13:24:29 · 1 answers · asked by ! 2 in Science & Mathematics Mathematics

oh that should be

[1-cos(3x/2)] / (1+x-e^x)

2007-11-15 13:25:24 · update #1

1 answers

The Maclaurin series for cos(t) is

cos(t) = 1 - t²/2! + (t^4)/4! - + ...

so

cos(3x/2) = 1 - (3x/2)²/2! + [(3x/2)^4]/4! -+...

and 1 - cos(3x/2) = (3x/2)²/2! - [(3x/2)^4]/4! + -...

e^x = 1 + x + (x²)/2! + (x³)/3! + ...

so

1 + x - e^x = - ((x²)/2! + (x³)/3! + ...)

2007-11-15 13:36:53 · answer #1 · answered by Ron W 7 · 0 0

fedest.com, questions and answers