English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

How do you do the following:

1) ∫ x² * e^(px) dx
2) ∫ x² * e^(-px) dx

2007-11-08 05:36:36 · 3 answers · asked by cornzxo1 1 in Science & Mathematics Mathematics

Note that p and x are both variables here.

2007-11-08 05:46:58 · update #1

3 answers

1)
For integration, p is a constant. It may vary as a parameter.
∫ x² * e^(px) dx
= x^2 ∫ e^(px) dx - ∫ [ d/dx(x^2) * ∫ e^(px) dx ] dx
= (1/p) x^2 * e^(px) - (2/p) ∫ x * e^(px) dx
= (1/p) x^2 * e^(px) - (2/p) [ x ∫ e^(px) dx - ∫∫ [e^(px) dx] dx]
= (1/p) x^2 * e^(px) - (2/p) [ (x/p) e^(px) + (1/p^2)e^(px) ] + c
= (1 / p^3) * e^(px) [ p^2 x^2 - 2px + 2 ] + c

2)
Replacing p by - p
∫ x² * e^(-px) dx = ( - 1/p^3) * e^(-px) [ p^2 x^2 + 2px + 2] +c

2007-11-08 06:21:38 · answer #1 · answered by Madhukar 7 · 0 0

p may be a variable, but unless you do a double integration with dp, it is treated as a constant. These are standard forms and can be looked up in a table of integrals.

2007-11-08 13:50:50 · answer #2 · answered by cattbarf 7 · 0 0

With respect to the integration "p" is a constant , termed a parameter in this problem. Use integration by parts

2007-11-08 13:52:40 · answer #3 · answered by ted s 7 · 0 0

fedest.com, questions and answers