English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

who ever explains it the best....gets the full points

2007-11-07 06:45:16 · 2 answers · asked by Chrisso 2 in Science & Mathematics Mathematics

and maximum

2007-11-07 06:49:07 · update #1

2 answers

A minimum is the lowest value a function reaches, between two given boundaries.

For example, if the function is
f(x) = x^2
which is a concave-up parabola centered on the origin. If you try plugging in all possible values of x from -infinity to +infinity, the lowest value of f(x) will be zero. Hence zero is the minimum of f(x).

If the function is
f(x) = cos(x)
and you plug in all possible values of x from -infinity to +infinity, the lowest value of f(x) will be -1. So, the minimum of f(x) is -1.

For maximum, you just look for the largest value that f(x) reaches. If f(x) = x^2, the maximum is infinity, since f(x) = infinity when x = infinity. If f(x) = cos(x), the maximum is 1, since the cosine function never goes above 1.

2007-11-07 06:53:41 · answer #1 · answered by lithiumdeuteride 7 · 0 0

there is no symbol for minimum in algebra
In calculus there is a term of discussion about minimum.
the zero slope or the derivative is the minimum or maximum point.

2007-11-07 14:51:26 · answer #2 · answered by CPUcate 6 · 0 0

fedest.com, questions and answers