English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Find the exact functional value using the cosine sum or difference identity.

sec (-pi/12)

2007-11-05 07:07:42 · 2 answers · asked by I C 1 in Science & Mathematics Mathematics

2 answers

sec(-pi/12) = 1/cos(-pi/12) = 1/cos(pi/12).

cos(pi/6) = sqrt(3)/2 = cos(2 pi/12)= cos^2(pi/12) - sin^2(pi/12) = 2 cos^2(pi/12) - 1. Hence,

cos^2(pi/12) = (1 + sqrt(3)/2)/2. Since pi/12 is in the first quadrant, its cosine is positive, so that

cos(pi/12) = sqrt((1 + sqrt(3)/2)/2). Finally,

sec(-pi/12) = sec(pi/12) = 1/(sqrt((1 + sqrt(3)/2)/2))

2007-11-05 07:18:42 · answer #1 · answered by Steiner 7 · 0 0

cos(-a) =cos a and sin(-a)= -sina so the above problem turns into cos10'cos35'-sin10'sin35' cosacosb-sinasinb= cos(a+b) formula so cos(10+35) = cos45 =a million/sqrt(2) for this reason the soln

2016-11-10 08:56:56 · answer #2 · answered by Anonymous · 0 0

fedest.com, questions and answers