Hi:
To answer your question you need to know what pi is and it history :
Number 1 : It is the ratio of a circle's circumference to it's diameter. it a constant number that never changes no matter how big or small the diameter of the circle you make. Start by cut some paper circles of varying diameters say 1 inch , 2 inch and 3 inch take a ruler and mark a spot on the edge of the paper circle and position that spot on the zero mark on the ruler. Then carefully roll the paper circle along the ruler and see where you end up as that point return to the bottom of the circle . This is the circumference now divide that number by the circle diameter, you should get a close value for pi. of about 3.1 or 3.2
Now to answer the second part of your question.
Back about three thousand years ago the ancient Egyptians estimated Pi to be about 3 units (you have to remember that their Mathematics were quite primitive and they had no algebra to help them at this time). Later the ancient Greeks developed and used the area of triangles filling a circle method to estimate pi to be between 22/7 and 3 10/71
around 240 B.C. However this was good enough for building things and such, but is was not good enough for mathematicans however. So a quest was started to find the true value for pi and various mehods were used to get a better and better estimate for the value of pi. In about the 15th and 16 th centry A.D. Various discovery where made about Pi:
1) Pi is irrational { Meaning it does not repeat itself ever ; like 1/3} and it's transcendental { Meaning that powers of and combination of powers of pi will not give finite whole numbers } So all formulae for computing pi will be infinitely long.
2) with the devolpment of Algbera and Calculus, certain series were found to give the approximate value of pi
PI= sqr ( 6*(1 + 1/(2^2)+ 1/(3^2)+ 1/ (4^2) + 1/(5^2).....) { sqr means Square root}
or
PI = 4*( 1- (1/3)+(1/5)-(1/7)+(1/9)- (1/11)......)
Those series take a long time to come to the value of Pi that we know Pi to be today. Which bring us to our era, when electronic computers were built, and as soon as they became avialable. Mathematican were able to comfirm those series to be the appoximate value of Pi , which are still in use today. it has been calulated the about 15 tillion decimal places and is so well known that it is use to gauged the speed and power of all supercomputers and computers that made today and in the future to come. and it being surpassed in the number of decimal places to be counted in. and it pop up in some interesting places.
More Pi info:
Tan ( 180/(N)) *N= pi ( N must be greater than 1,000 to get good results)
or
(Sin (180/N))*N = pi
Pi= aprox= 3.1415926535897932846264...
ln(640320^3 + 744) / sqr(163)
A more accurate faction value for is : 104348 / 33215
first fraction found for pi is between 22/7 and 3 10/71
pi appox = 355/113
A way to remember pi: ( count the number of letter in each word of the statement)
How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics. All of thy geometry, Herr Planck, is fairly hard...:
3.1415926535897932846264
Fourth root of (97+9/22) = 3.14159265
52,163/16,604
instresting thing about Pi
American Pi
in the Hebrew Bible we do see
the Circle Ratio appears as three
and the Rhind Papyrus does Report four-thirds to the fourth.
The follow websites and books might interest you:
http://mathworld.wolfram.com/PiFormulas.html
http://mathforum.org/library/drmath/view/58304.html
3.141592653589793238462643383279502884197169399375105820974944592.com
http://www.gutenberg.org/dirs/etext93/pimil10.txt
http://news.inq7.net/breaking/index.php?index=3&story_id=42142
http://numbers.computation.free.fr/Constants/PiProgram/pifasthome.html
www.joyofpi.com/pifacts.html
http://www.cacr.caltech.edu/~roy/upi/pi.50000.html
http://www.yahoo.com/Science/Mathematics/Numbers/PI/
http://oldweb.cecm.sfu.ca/personal/jborwein/Kanada_200b.html
http://www.cs.uwaterloo.ca/~alopez-o/math-faq/mathtext/node12.html
http://www.eveandersson.com/pi/
http://newton.ex.ac.uk/research/qsystems/collabs/pi/
http://newton.ex.ac.uk/research/qsystems/collabs/pi/pi6.txt
http://www.maa.org/mathland/mathland_3_11.html
www.math.hmc.edu/funfacts/ffiles/20010.5.shtml
www.angio.net/pi/piquery
pi.nersc.gov
PBS.org - Nova Website - Look for the show entitled "Infinite Secrets"- Explain how Archimedes appoximated the value of pi along with a formula for the pi value
1. P. Beckmann, A History of p, St. Martin's Press, 1971; MR 56 #8261.
2. J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, 1987, pp. 46-52, 169-177, 337-362, 385-386; MR 99h:11147.
3. E. F. Assmus, Pi, Amer. Math. Monthly 92 (1985) 213-214.
T. Wayman, Discovering Archimedes' method for p, Mathcad file wayman.mcd, substantial revision by S. Finch.
4. G. M. Phillips, Archimedes and the complex plane, Amer. Math. Monthly 91 (1984) 108-114; MR 85h:40003.
5. G. Miel, Of calculations past and present: the Archimedean algorithm, Amer. Math. Monthly 90 (1983) 17-35; MR 85a:01006.
6. H. Dörrie, 100 Great Problems of Elementary Mathematics: Their History and Solution, Dover, 1965; MR 84b:00001.
7. E. Waymire, Buffon Noodles, Amer. Math. Monthly 101 (1994) 550-559; addendum 101 (1994) 791; MR 95g:60021a and MR 95g:60021b.
8. E. Wegert and L. N. Trefethen, From the Buffon needle problem to the Kreiss matrix theorem, Amer. Math. Monthly 101 (1994) 132-139; preprint; MR 95b:30036.
9. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford, 1985; MR 81i:10002.
10. A. E. Taylor and R. Mann, Advanced Calculus, 2nd ed., Wiley, 1972; MR 83m:26001.
11. R. D. Carmichael and E. R. Smith, Mathematical Tables and Formulas, Dover, 1931.
12. M. R. Spiegel, Advanced Calculus, McGraw-Hill, 1968.
13. J. M. Borwein, P. B. Borwein and D. H. Bailey, Ramanujan, modular equations, and approximations to pi, or how to compute one billion digits of pi, Amer. Math. Monthly 96 (1989) 201-219; Organic Mathematics, ed. J. Borwein, P. Borwein, L. Jörgenson and R. Corless, Amer. Math. Soc., 1997, pp. 35-71; MR 90d:11143.
14. G. Almkvist and B. Berndt, Gauss, Landen, Ramanujan, the Arithmetic-Geometric Mean, Ellipses, p, and the Ladies Diary, Amer. Math. Monthly 95 (1988) 585-608; MR 89j:01028.
15. D. V. Chudnovsky and G. V. Chudnovsky, The computation of classical constants, Proc. Natl. Acad. Sci., USA 86 (1989) 8178-8182; MR 90m:11206.
16. D. V. Chudnovsky and G. V. Chudnovsky, Classical constants and functions: computations and continued fraction expansions, Number Theory: New York Seminar 1989-1990, Springer-Verlag, 1991, pp. 13-74; MR 93c:11118.
17. J. M. Borwein and P. B. Borwein, More Ramanujan-type series for 1/p, Ramanujan Revisited, Proc. 1987 Univ. of Illinois conf., Academic Press, 1988, pp. 375-472; MR 89d:11118.
18. R. Courant and H. Robbins, What is Mathematics?, Oxford, 1941; MR 93k:00002.
19. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th ed., Academic Press, 1980, pp. 342, 956; MR 97c:00014.
20. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972; MR 94b:00012.
21. A. M. Odlyzko, Asymptotic enumeration methods, Handbook of Combinatorics, v. II, ed. R. L. Graham, M. Grötschel and L. Lovász, MIT Press, 1995, pp. 1063-1229; preprint; MR 97b:05012.
22. P. Flajolet and A. Odlyzko, The average height of binary trees and other simple trees, J. Comp. Sys. Sci. 25 (1982) 171-213; MR 84a:68056.
23.J. B. Conway, Functions of One Complex Variable, 2nd ed. Springer-Verlag, 1978; MR 80c:30003.
24. G. F. Simmons, Differential Equations with Applications and Historical Notes, McGraw-Hill, 1972; MR 58 #17258.
25. G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976; MR 99c:11126.
26. L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North Holland, 1992, pp. 561-562; MR 93g:30007.
27. R. Williams, Arctangent Formulas for Pi (Calif. Instit. of Technology).
28. J. J. O'Connor and E. F. Robertson, Pi Through the Ages (Univ. of St. Andrews).
29. Y. Kanada, Latest Record in Computing Pi (University of Tokyo).
30. S. Rabinowitz and S. Wagon, A spigot algorithm for the digits of p, Amer. Math. Monthly 102 (1995) 195-203; MR 96a:11152.
31. P. R. Lorczak, p: A programming example, Mathcad file spigot.mcd, Mathcad Treasury, Mathsoft electronic book.
32. J. Wimp, Book review of "Pi and the AGM", SIAM Review 30 (1988) 530-533.
33. P. R. Lorczak, Computing p, Mathcad file pihist.mcd, Applied Mathcad, April 1992.
34. J. M. Borwein and F. G. Garvan, Approximations to pi via the Dedekind eta function, Organic Mathematics, ed. J. Borwein, P. Borwein, L. Jörgenson and R. Corless, Amer. Math. Soc., 1997, pp. 89-115; MR 98j:11030.
35. D. H. Bailey, J. M. Borwein, P. B. Borwein and S. Plouffe, The quest for pi, Math. Intellig. 19 (1997) 50-57; CECM preprint 96:070; MR 98b:01045.
36. L. B. W. Jolley, Summation of Series, 2nd rev. ed., Dover, 1961; MR 24 #B511.
37. J. Borwein, Talking about Pi ? (CECM).
38. P. Borwein, Pi and Other Constants (CECM).
39.The Uselessness of Pi and its Irrational Friends.
41. G. Almkvist, Many correct digits of p, revisited, Amer. Math. Monthly 104 (1997) 351-353; MR 98a:11189.
Madhava,
42. The power series for arctan and p, ~1400; Pi: A Source Book, 2nd ed., ed. L. Berggren, J. M.
43. Borwein and P. B. Borwein, Springer-Verlag, 2000; MR 98f:01001.
44. K. Brown, Rounding up to pi (MathPages).
45. P. Erdös and E. Jabotinsky, On sequences of integers generated by a sieving process, Konink. Nederl. Akad. Wetensch. Proc. Ser. A 61 (1958) 115-128; Indag. Math. 20 (1958) 20 115-128; MR 21 #2628.
46. D. Betten, Kalahari and the sequence "Sloane No. 377", Combinatorics '86, ed. A. Barlotti, M. Marchi and G. Tallini, North Holland, Ann. Discrete Math. 37 (1988) 51-58; MR 89f:05010.
47. N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, AT&T Research, A002491.
48. M. A. Stern, Theorie der Kettenbrüche und ihre Anwendung, III, J. Reine Angew. Math. 10 (1833) 241-274.
49. K. Brown, Integer Sequences Related to Pi (MathPages).
50. D. Blatner, The Joy of Pi, Walker and Co., 1997.
51. O. Toeplitz, The Calculus: A Genetic Approach, Univ. of Chicago Press, 1981; MR 11,584e.
52. T. M. Apostol et al, Selected Papers in Calculus, Math. Assoc. Amer., 1968, pp. 368-388.
53. D. C. van Leijenhorst, Algorithms for the approximation of p, Nieuw Archief Wisk. 14 (1996) 255-274; MR 98b:11130.
54. V. Adamchik and S. Wagon, A simple formula for p, Amer. Math. Monthly 104 (1997) 852-854; MR 98h:11166.
55. I. Vardi, Pi Exists (Institut des Hautes Etudes Scientifiques).
56. I. Vardi, Extending Archimedes' method, unpublished manuscript (1998); What is ancient mathematics?, Math. Intellig. 21 (1999) 38-47; preprint.
57.M. D. Hirschhorn, A new formula for p, Gazette Austral. Math. Soc. 25 (1998) 82-83; expanded preprint; MR 99d:01046.
58. D. M. Bradley, Evaluating the Gaussian integral, (1998).
59. J. Miller and T. Ladd, Infinite summations and integrals of a class of band-limited functions, (1998).
60. Dihedral angle of regular tetrahedron, sci.math.research discussion, Oct. 1998.
61. Volume of n-dimensional ball, Mathsoft puzzle solution, Nov. 1998.
62.A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, v. I, Holden-Day, 1964; problems 92-93; MR 88m:00012a.
63.A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, v. II, Holden-Day, 1967; problems 139-147; MR 88m:00012b.
64. L. J. Lange, An elegant continued fraction for p, Amer. Math. Monthly 106 (1999) 456-458.
65. R. W. Gosper, M. E. H. Ismail and R. Zhang, On some strange summation formulas, Illinois J. Math. 37 (1993) 240-277; MR 95g:33025.
66.G. Almkvist and H. S. Wilf, On the coefficients in the Hardy-Ramanujan-Rademacher formula for p(n), J. Number Theory 50 (1995) 329-334; reprint; MR 96e:11129.
67. D. H. Bailey and D. J. Broadhurst, Parallel integer relation detection: techniques and applications, (1999), math.NA/9905048.
68. H. Havermann, Simple Continued Fraction Expansion of Pi.
69. B. Gourevitch, The Pi-World.
70. G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, 1999, p. 58, ex. 52; MR 2000g:33001.
71. W. Scharlau and H. Opolka, From Fermat to Minkowski, Springer-Verlag, 1985; pp. 30, 83; MR 85m:11003.
72. R. Knott, Pi and the Fibonacci Numbers (Univ. of Surrey).
73. T. J. Osler, The union of Vieta's and Wallis's products for pi, Amer. Math. Monthly 106 (1999) 774-776.
74. X. Gourdon and P. Sebah, The constant pi and PiFast: the fastest program to compute pi (Numbers, Constants and Computation).
75. R. Roy, The discovery of the series formula for p by Leibniz, Gregory and Nilakantha, Math. Magazine 63 (1990) 291-306; Pi: A Source Book, pp. 92-107; MR 92a:01029.
76. J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonek, Special values of multidimensional polylogarithms, Trans. Amer. Math. Soc., to appear; math.CA/9910045; CECM preprint 98:106.
77. D. Bailey, P. Borwein and S. Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comp. 66 (1997) 903-913; MR 98d:11165.
78. A. Lupas, Some BBP-functions, (2000).
79. P. Eymard and J.-P. Lafon, Autour du nombre p, Hermann, 1999.
80. S. D. Dubey, Statistical determination of certain mathematical constants and functions using computers, J. Assoc. Comput. Mach. 13 (1966) 511-525; MR 34 #2149.
81. J. M. Borwein and I. J. Zucker, Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind, IMA J. Numer. Analysis 12 (1992) 519-529; MR 93g:65028.
82. G. M. Phillips, Archimedes the numerical analyst, Amer. Math. Monthly 88 (1981) 165-169; Pi: A Source Book, pp. 15-19; MR 83e:01005.
83. E. Salamin, Computation of p using arithmetic-geometric mean, Math. Comp. 30 (1976) 565-570; MR 53 #7928.
84. R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM 23 (1976) 242-251; MR 52 #16111.
85. D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan Revisited, Proc. 1987 Univ. of Illinois conf., Academic Press, 1988, pp. 375-472; MR 89f:11099.
86. Y. David, On a sequence generated by a sieving process, Riveon Lematematika 11 (1957) 26-31; MR 21 #2627.
87. D. M. Broline and D. E. Loeb, The combinatorics of Mancala-type games: Ayo, Tchoukaitlon, and 1/p, UMAP Journal 16 (1995) 21-36, preprint.
88. N. J. A. Sloane, My favorite integer sequences, Sequences and their Applications, Proc. 1998 SETA conf., ed. C. Ding, T. Helleseth and H. Niederreiter, Springer-Verlag, 1999, pp. 103-130; preprint.
89. G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. 17 (1918) 75-115.
90. H. Rademacher, On the partition function p(n), Proc. London Math. Soc. 43 (1937) 241-254.
91. Y. V. Matiyasevich and R. K. Guy, A new formula for p, Amer. Math. Monthly 93 (1986) 631-635; MR 2000i:11199.
Archimedes' Approximation of Pi (Florida Gulf Coast University).
92. G. L. Cohen and A. G. Shannon, John Ward's method for the calculation of pi, Historia Math. 8 (1981) 133-144; MR 83d:01021.
93. L. Euler, Introduction to Analysis of the Infinite. Book I, 1748, transl. J. D. Blanton, Springer-Verlag, 1988, pp. 137-153, 311-312; MR 89g:01067.
94. F. Viète, Variorum de Rebus Mathematicis Reponsorum Liber VIII, 1593; Pi: A Source Book, pp. 53-56, 690-706.
95. J. Wallis, Computation of p by successive interpolations, Arithmetica Infinitorum, 1655; Pi: A Source Book, pp. 68-80.
96. J. Gregory, correspondence with J. Collins, 1671; Pi: A Source Book, pp. 87-91.
97. G. W. Leibniz, Schediasma de serierum summis, et seriebus quadraticibus, 1674; J. M. Child, The Early Mathematical Manuscripts of Leibniz, transl. from texts published by C. I. Gerhardt, Open Court Publishing, 1920, pp. 60-61.
98. Archimedes, Measurement of a circle, ~250 BC; Pi: A Source Book, pp. 7-14.
99.S. Ramanujan, Modular equations and approximations to p, Quart. J. Math. 45 (1914) 350-72.
100. Alternating series, e-message (1995).
101 .An asymptotic expansion, USENET sci.math.research newsgroup discussion (1996).
102. J. Carette, Proof of a limit, e-message (1996).
103. S. Kogan, More infinite products involving pi, e-message (1997).
104. Trigonometric power formulas, e-discussion (1997).
Mathographic by Robert Dixion pubished by Dover publications
Handbook of Mathematical tables and Formulas by Richard Steven Burington published by the Mcgraw Hill Book Co.
a History of Pi ( a good book on the subject of Pi) by Peter Beckmann
The Joy of Pi ( other good book on Pi)
PI: A Biography of the world most Mystrious Number by Alfered S Postamentier, Ingmar Lehmann, Herbert A Hauptman ( afterword) ( other good book on the subject)
Project Mathemetics - by Cal Tech - Vhs tapes series - seen the Nasa Tv education entitled "The Story of PI" and is available from Cal Tec or NASA website
Check out the Internet websites for Pi. By typing Pi in one of the search engines and see what website pop up.
Hope this helps
2007-11-02 18:03:21
·
answer #10
·
answered by Anonymous
·
0⤊
0⤋