English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-10-29 13:18:00 · 3 answers · asked by mathstudent 2 in Science & Mathematics Mathematics

disregard the last integral

2007-10-29 13:58:09 · update #1

3 answers

For the second integral:

1) Use the substitution u = e^(-x) + 1. Solve this for x and you have x = -ln(u-1), from which you can get dx. You'll need to use partial fraction decomposition.

2) Write the integrand as (1+e^(-x) - e^(-x))/(e^(-x) + 1). Split this into
(1+e^(-x))/(e^(-x) + 1) - e^(-x)/(e^(-x) + 1), that is,
1 - [e^(-x)/(e^(-x) + 1)]. Then use the substitution
u = e^(-x) + 1, so du = -e^(-x) dx.

2007-10-29 14:03:13 · answer #1 · answered by Ron W 7 · 0 0

csc(ax)cot(ax)=(1/sin(ax))*(cos(ax)/sin(ax)):
let u=sin(ax), then du=a*cos(ax)dx,
and the integrand becomes
a*du/u^2,
and the integral is
(a/3)*u^3 = (pi/3)*(sin^3(ax)) + C

2007-10-29 20:31:03 · answer #2 · answered by Not Eddie Money 3 · 0 0

1/♠ y(x)*dx = dx*(1/sin) *(cos/sin) =dx*cos/sin^2;
u=sin(pi x), du =pi*dx*cos(pi x), du/pi =dx*cos(pi x);
y(u)*du = (du/pi) /u^2;
♣ Y(u) = (-1/pi)/u = C - (1/pi)/sin(pi x);
2/♦ y(x)*dx = dx/(exp(-x) +1) = dx *exp(x) /((1+exp(x));
u=exp x, du =dx *exp x; y(u)*du = du/(1+u);
♥ Y(u) = ln(1+u)= ln(1+ e^x) +C;

2007-10-29 22:56:54 · answer #3 · answered by Anonymous · 0 0

fedest.com, questions and answers