English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

3 to the power of x+2 equals 7 to the power of 2x plus 5

2007-10-28 14:04:23 · 5 answers · asked by Best S 1 in Science & Mathematics Mathematics

5 answers

3^(x+2)=7^(2x+5)
(x+2)log 3 = (2x+5)log 7
xlog3 +2log 3= 2xlog 7 + 5log 7
x(log3-2log 7)=5log 7 - 2 log 3
x= (5 log 7 - 2 log 3)/(log 3 - 2 log 7)
x= (4.225-.954)/(.477- 1.69)
x= -2.6966

2007-10-28 14:14:55 · answer #1 · answered by chasrmck 6 · 0 0

Alright, so it sounds like you want to solve for x in the equation:
3^(x+2) = 7^(2x+5)
I would first take the natural log of both sides (or any log really).
So:
ln3^(x+2) = ln7^(2x+5)

Now you can take the powers and bring them in front of the logs because of log properties. So:

(x+2)ln3 = (2x+5)ln7, distribute.
xln3 + 2ln3 = 2xln7 + 5ln7, isolate x on both sides.
xln3 - 2xln7 = 5ln7 - 2ln3, factor out an x
x(ln3-2ln7) = 5ln7 - 2ln3
x = (5ln7 - 2ln3)/(ln3-2ln7)

Check this, but I think that comes out to about -2.6967. Hope that's helpful.

2007-10-28 14:19:25 · answer #2 · answered by Anonymous · 0 0

Offhand, it looks like x will negative for this to work.
A quicky way to do this is to find 7 to the base 3. You can use base 10 logs for this = log 7/log 3. Call result "A" (about 1.7). Then you can set
A * (2x+5) = x+2 and solve for x in terms of A and numbers. (2-5A )/ (2A-1) ???

2007-10-28 14:23:54 · answer #3 · answered by cattbarf 7 · 0 0

3^(x + 2) = 7^(2x + 5)
Take the ln of both sides

ln 3^(x + 2) = ln 7^(2x + 5)

use the power rule of logs
(x + 2) ln3 = (2x + 5) ln 7

distribute
x ln3 + 2 ln3 = 2x ln7 + 5 ln7

get your x terms on same side, non-x terms on opposite side
x ln3 - 2x ln 7 = 5 ln7 - 2 ln3

factor out x on the left
x(ln3 - 2ln7) = 5ln7 - 2 ln3

divide the ( ) to other side

x = (5ln7 - 2ln3)/(ln3 - 2ln7)

2007-10-28 14:10:26 · answer #4 · answered by Linda K 5 · 2 0

okay...?
what's the problem? do you need to simplify it?

2007-10-28 14:10:26 · answer #5 · answered by kisk29 4 · 0 0

fedest.com, questions and answers