English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

find the 1800th derivative of f(x)=xe^-x

i thought it would work out to be e^-x(1800-x)
but thats not right.... and i tried everything i could think of and i'm not getting this right..
pleaseee help!!

2007-10-25 12:23:00 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

f(x)=xe^-x

f' = e^-x -xe^-x = e^-x -f

f" = -e^-x - {e^-x -xe^-x} = -2e^-x +xe^-x
f"' = +2e^-x +e^-x -xe^-x = 3e^-x -xe^-x
f"" = -3e^-x -e^-x +xe^-x = -4e^-x +xe^-x
..........................................................
..........................................................
..........................................................
..........................................................
Notice the sign change from - to + when the order of the derivative is even or odd

the 1800th derivative is =
-1800e^-x +xe^-x = (x - 1800)e^-x

2007-10-25 12:39:24 · answer #1 · answered by Anonymous · 1 0

I'm getting e^(-x) (x - 1800).

f(x) = xe^(-x)
f'(x) = e^(-x) - xe^(-x) = (1-x)e^(-x)
f''(x) = -e^(-x) - (1-x)e^(-x) = (x-2)e^(-x)
f'''(x) = e^(-x) - (x-2)e^(-x) = (3-x)e^(-x)
etc..
1800 being even gives the answer above.

2007-10-25 12:39:09 · answer #2 · answered by ♣ K-Dub ♣ 6 · 0 0

fedest.com, questions and answers