English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Solve |3x - 6| > 3

x > 3 and x <1
x > 3 or x > 9
x > 3 and x > 9
x > 3 or x < 1
1 < x < 3

2007-10-25 10:29:07 · 4 answers · asked by Anonymous in Science & Mathematics Mathematics

4 answers

According to the definition of the absolute value:
If 3x - 6 >= 0 (thus x >= 2)

|3x - 6| = 3x - 6

For x>= 2:

|3x - 6| > 3

3x - 6 > 3 // + 6

3x > 9 // divide by 3

x > 3

If x<2 (which means 3x - 6 < 0)
-(3x - 6) > 3

-3x + 6 > 3 // - 6

-3x > - 3 // divide by -3

x < 1

Combine with the case that x>=2, and you'll get:
x > 3 or x < 1

2007-10-25 10:37:36 · answer #1 · answered by Amit Y 5 · 0 0

-3 > 3x -6 >3
3 > 3x > 9
1 > x > 3

2007-10-25 10:33:22 · answer #2 · answered by roguetrader12002 4 · 0 0

x > 3 or x < 1
----------
Ideas: Solve 3x-6 > 3 => x > 3, or -(3x-6) > 3 => x < 1

2007-10-25 10:38:29 · answer #3 · answered by sahsjing 7 · 0 0

3x-6 >3
3x > -3
x> -1

-3x+6 < 3
-3x < -3
x>1

2007-10-25 10:37:36 · answer #4 · answered by Darkskinnyboy 6 · 0 0

fedest.com, questions and answers