How do you prove that the quaternion group is not isomorphic to the dihedral group D_4?
the quanternion group looks like this
.........| e a a^2 a^3 b ba ba^2 ba^3
----------------------------- -------------------
e.......| e a a^2 a^3 b ba ba^2 ba^3
a.......| a a^2 a^3 e ba^3 b ba ba^2
a^2...| a^2 a^3 e a ba^2 ba^3 b ba
a^3...| a^3 e a a^2 ba ba^2 ba^3 b
b.......| b ba ba^2 ba^3 a^2 a^3 e a
ba.....| ba ba^2 ba^3 b a a^2 b^3 e
ba^2.| ba^2 ba^3 b ba e a a^2 a^3
ba^3.| ba^3 b ba ba^2 a^3 e a a^2
2007-10-22
08:42:35
·
2 answers
·
asked by
Anonymous
in
Science & Mathematics
➔ Mathematics