English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

find the derivative

2007-10-15 02:59:24 · 4 answers · asked by Anonymous in Science & Mathematics Mathematics

4 answers

df/du = 1/(u^2+10) - u*2u/(u^2+10)^2

= (u^2+10 -2u^2)/(u^2+10)^2 = (10 - u^2)/(u^2+10)^2

2007-10-15 03:05:24 · answer #1 · answered by nyphdinmd 7 · 0 0

[ (u)'(u^2 + 10) - (u)(u^2 + 10)' ] / (u^2 + 10)^2
[ (1)(u^2 + 10) - (u)(2u) ] / (u^2 + 10)^2
[ 10 - u^2 ] / (u^2 + 10)^2
[ 10 - u^2 ] / (u^2 + 10)^2

2007-10-15 10:06:31 · answer #2 · answered by Anonymous · 0 0

10 - u^2
---------------------------
u^4 + 20u^2 + 100

Use this formula :
(f(x)/g(x))' = [f'(x)g(x)-f(x)g'(x)]/[g(x)^2]
When f(x) and g(x) are functions in x.

2007-10-15 10:07:35 · answer #3 · answered by wangsacl 4 · 0 0

f'(u)/dx = ((u^2 + 10)du/dx - u*2u*du/dx)/(u^2+10)^2
f'(u)/dx = ((u^2 + 10) - 2u^2)du/dx/(u^2+10)^2
f'(u)/dx = ((10-u^2)/(u^2+10)^2)du/dx

2007-10-15 10:08:16 · answer #4 · answered by Peter m 5 · 0 0

fedest.com, questions and answers