English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-10-14 12:00:58 · 4 answers · asked by whizkid2007 1 in Science & Mathematics Mathematics

4 answers

Integrate sin³x with respect to x.

First do some algebraic manipulation to make it easier to integrate.

sin³x = sinx(sin²x) = sinx(1 - cos²x) = sinx - (sinx)(cos²x)

Now we can integrate.

∫sin³x = ∫[sinx - (sinx)(cos²x)]dx

= -cosx + (1/3)cos³x + C

2007-10-14 12:20:04 · answer #1 · answered by Northstar 7 · 1 0

i[..] = integral sin^3(x) dx=

i[sin^2(x).sin(x) dx]=

i[ (1-cos^2(x) ).sin(x) dx] => u=cos(x) => du= -sin(x) dx => sin(x) dx= - du

=> i[..] = i[ (1-u^2)(-du) ]

i[..] = -(u-(u^3)/3) = (u^3)/3 - u + C. Now substitute u= cos(x)

i[..] = ([cos^3(x)]/3) - cos(x) + C
= 1/3(cos^3(x)) - cos(x) + C

2007-10-14 19:22:32 · answer #2 · answered by bobrez 2 · 0 0

-1/3cosx(2 + sin^2(x)) + C

If you differentiate this (carefully!!), you'll get your integrand

2007-10-14 19:19:01 · answer #3 · answered by e2theitheta 2 · 0 0

(1/4)sec(x)sin^4(x)

2007-10-14 19:05:08 · answer #4 · answered by rfiskt 2 · 0 1

fedest.com, questions and answers