English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-10-13 22:18:46 · 3 answers · asked by Mark Z 1 in Science & Mathematics Mathematics

3 answers

I assume you mean
1/(tanx-secx)+1/(tanx+secx) = 2 tanx

LHS
= 1/(tanx-secx)+1/(tanx+secx)
= (tanx + secx + tanx - secx) / [(tanx)^2- (secx)^2]
= 2tanx / (-1)
= - 2tanx

RHS = 2tanx is not correct.

2007-10-13 22:24:24 · answer #1 · answered by Madhukar 7 · 1 0

I assume you mean "Prove the identity." And further that you meant to put on parentheses as shown below.

1/(tanx - secx) + 1/(tanx + secx) = 2tanx
_________

Left Hand Side = 1/(tanx - secx) + 1/(tanx + secx)

= (tanx + secx) / [(tanx - secx)(tanx + secx)]
+ (tanx - secx) / [(tanx + secx)(tanx - secx)]

= (tanx + secx) / (tan²x - sec²x) + (tanx - secx) / (tan²x - sec²x)

= (tanx + secx + tanx - secx) / (-1)

= 2tanx / (-1) = -2tanx

This is NOT an identity.

2007-10-13 22:31:50 · answer #2 · answered by Northstar 7 · 1 0

(a million/tanx+secx)+(a million/tanx-secx) Take LCM and we get [(tan x - sec x ) + ( tan x + sec x) ] / [ tan x +sec x) ( tan x sec x)] Numerator will become 2 tan x denominator will become tan^2 x - sec^2 x = -a million | using relation a million + tan^2 x = sec^2 x so we get 2tan x / -a million -2tan x =RHS

2016-12-29 08:35:18 · answer #3 · answered by schroder 3 · 0 0

fedest.com, questions and answers