Ions are atoms with fewer or more electrons than normal.
When oxygen is ionized the normal O2 molecule becomes an 03 molecule; ozone, which is cancerous.
In medicine an ion can change the normal functions of the atom and make it more reactive so it is more likely to form unusual and sometimes dangerous chemical bonds, as with ozone.
Radical Ions play roles in several health problems; form Parkinson's Disease to killing bacteria (bacteria in our gut helps us digest our food). Racial Ions are also suspect to be harmful parts of the aging process, a cause for emphysema and a major factor for cancer. It is that dangerous reactivity that makes them so bad.
Read the articles, especially the one on Radical Ions for more information.
According to Wikipedia: http://en.wikipedia.org/wiki/Ion
"An ion is an atom or molecule which has lost or gained one or more electrons, making it negatively or positively charged. An ion consisting of a single atom is called a monatomic ion. A negatively charged ion, which has more electrons in its electron shells than it has protons in its nuclei, is known as an anion (pronounced [ˈænaɪən]; an-eye-on) due to its attraction to anodes. A positively-charged ion, which has fewer electrons than protons, is known as a cation (pronounced [ˈkætaɪən]; cat-eye-on) due to its attraction to cathodes. A polyatomic anion that contains oxygen is sometimes known as an oxyanion.
Ions are denoted in the same way as electrically neutral atoms and molecules except for the presence of a superscript indicating the sign of the net electric charge and the number of electrons lost or gained, if more than one. For example: H+, SO42−. An alternate way of denoting charge is like this: SO4-2."
According to Wikipeida: http://en.wikipedia.org/wiki/Radical_%28chemistry%29
"In chemistry, radicals (often referred to as free radicals) are atomic or molecular species with unpaired electrons on an otherwise open shell configuration. These unpaired electrons are usually highly reactive, so radicals are likely to take part in chemical reactions. Radicals play an important role in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes, including human physiology. For example, superoxide and nitric oxide regulate many biological processes, such as controlling vascular tone. "Radical" and "free radical" are frequently used interchangeably, however a radical may be trapped within a solvent cage or be otherwise bound. The first organic free radical, the triphenylmethyl radical was identified by Moses Gomberg in 1900 at the University of Michigan.
Historically, the term radical has also been used for bound parts of the molecule, especially when they remain unchanged in reactions. For example, methyl alcohol was described as consisting of a methyl 'radical' and a hydroxyl 'radical'. Neither were radicals in the usual chemical sense, as they were permanently bound to each other, and had no unpaired, reactive electrons. In mass spectrometry, such radicals are observed after breaking down the substance with a hail of energetic electrons....
Free radicals play an important role in a number of biological processes, some of which are necessary for life, such as the intracellular killing of bacteria by neutrophil granulocytes. Free radicals have also been implicated in certain cell signalling processes. The two most important oxygen-centered free radicals are superoxide and hydroxyl radical. They are derived from molecular oxygen under reducing conditions. However, because of their reactivity, these same free radicals can participate in unwanted side reactions resulting in cell damage. Many forms of cancer are thought to be the result of reactions between free radicals and DNA, resulting in mutations that can adversely affect the cell cycle and potentially lead to malignancy. Some of the symptoms of aging such as atherosclerosis are also attributed to free-radical induced oxidation of many of the chemicals making up the body. In addition free radicals contribute to alcohol-induced liver damage, perhaps more than alcohol itself. Radicals in cigarette smoke have been implicated in inactivation of alpha 1-antitrypsin in the lung. This process promotes the development of emphysema.
Free radicals may also be involved in Parkinson's disease, senile and drug-induced deafness, schizophrenia, and Alzheimer's. The classic free-radical syndrome, the iron-storage disease hemochromatosis, is typically-associated with a constellation of free-radical-related symptoms including movement disorder, psychosis, skin pigmentary melanin abnormalities, deafness, arthritis, and diabetes. The free radical theory of aging proposes that free radicals underlie the aging process itself."
2007-10-12 20:26:39
·
answer #1
·
answered by Dan S 7
·
0⤊
0⤋