English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

4 answers

g ( t ) = (t^5 + 4) ^(- 4 )
g `( t ) = (- 4) ( t^5 + 4 )^( - 5 ) ( 5 t ^4)
g `( t ) ( - 20 t^4 ) / ( t^5 + 4 )^5

2007-10-10 11:07:31 · answer #1 · answered by Como 7 · 1 0

You need to use chain rule:

g(t) = (t^5+4)^-4 so you derivate and get

g'(t) = -4 ( t^5 + 4) ^-5 d/dx (t^5 + 4)

g'(t) = -4 ( 5t^4) / (t^5 + 4)^5

g+(t) = -20t^4 / (t^5 + 4) ^5

MariLuz

2007-10-06 20:56:49 · answer #2 · answered by mariluz 5 · 0 0

g(t) = 1/(t^5+4)^4

= (t^5 + 4)^(-4)

g'(t) = -4(t^5 + 4)^(-5) [5t^4]

= -20t^4/(t^5 + 4)^5

2007-10-06 20:57:32 · answer #3 · answered by mohanrao d 7 · 0 0

g(t) = (t^5 + 4)^-4
let u = t^5 + 4, then du = 5t^4 dt

g = u^-4
g'= -4*u^-5 du
g' = -4*(t^5 + 4)^-5 (5t^4)dt
g' = [-4*(5t^4) / (t^5+4)^-5] dt

2007-10-06 20:58:32 · answer #4 · answered by Raymond 7 · 0 0

fedest.com, questions and answers